File size: 5,437 Bytes
b3aef16 791cc4d b3aef16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
tags:
- image-classification
- timm
- transformers
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for test_efficientnet_ln.r160_in1k
A very small test EfficientNet image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 0.4
- GMACs: 0.1
- Activations (M): 0.6
- Image size: 160 x 160
- **Dataset:** ImageNet-1k
- **Papers:**
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
- **Original:** https://github.com/huggingface/pytorch-image-models
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('test_efficientnet_ln.r160_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'test_efficientnet_ln.r160_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 16, 80, 80])
# torch.Size([1, 24, 40, 40])
# torch.Size([1, 32, 20, 20])
# torch.Size([1, 48, 10, 10])
# torch.Size([1, 64, 5, 5])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'test_efficientnet_ln.r160_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 256, 5, 5) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
### By Top-1
|model |img_size|top1 |top5 |param_count|
|--------------------------------|--------|------|------|-----------|
|test_convnext3.r160_in1k |192 |54.558|79.356|0.47 |
|test_convnext2.r160_in1k |192 |53.62 |78.636|0.48 |
|test_convnext2.r160_in1k |160 |53.51 |78.526|0.48 |
|test_convnext3.r160_in1k |160 |53.328|78.318|0.47 |
|test_convnext.r160_in1k |192 |48.532|74.944|0.27 |
|test_nfnet.r160_in1k |192 |48.298|73.446|0.38 |
|test_convnext.r160_in1k |160 |47.764|74.152|0.27 |
|test_nfnet.r160_in1k |160 |47.616|72.898|0.38 |
|test_efficientnet.r160_in1k |192 |47.164|71.706|0.36 |
|test_efficientnet_evos.r160_in1k|192 |46.924|71.53 |0.36 |
|test_byobnet.r160_in1k |192 |46.688|71.668|0.46 |
|test_efficientnet_evos.r160_in1k|160 |46.498|71.006|0.36 |
|test_efficientnet.r160_in1k |160 |46.454|71.014|0.36 |
|test_byobnet.r160_in1k |160 |45.852|70.996|0.46 |
|test_efficientnet_ln.r160_in1k |192 |44.538|69.974|0.36 |
|test_efficientnet_gn.r160_in1k |192 |44.448|69.75 |0.36 |
|test_efficientnet_ln.r160_in1k |160 |43.916|69.404|0.36 |
|test_efficientnet_gn.r160_in1k |160 |43.88 |69.162|0.36 |
|test_vit2.r160_in1k |192 |43.454|69.798|0.46 |
|test_resnet.r160_in1k |192 |42.376|68.744|0.47 |
|test_vit2.r160_in1k |160 |42.232|68.982|0.46 |
|test_vit.r160_in1k |192 |41.984|68.64 |0.37 |
|test_resnet.r160_in1k |160 |41.578|67.956|0.47 |
|test_vit.r160_in1k |160 |40.946|67.362|0.37 |
## Citation
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
|