Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
datasets:
|
3 |
- squad_v2
|
4 |
-
language:
|
5 |
- multilingual
|
6 |
- af
|
7 |
- am
|
@@ -63,7 +63,7 @@ language:
|
|
63 |
- my
|
64 |
- ne
|
65 |
- nl
|
66 |
-
- no
|
67 |
- om
|
68 |
- or
|
69 |
- pa
|
@@ -96,19 +96,32 @@ language:
|
|
96 |
- xh
|
97 |
- yi
|
98 |
- zh
|
99 |
-
tags:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
105 |
license: mit
|
106 |
---
|
107 |
## This model can be used for Extractive QA
|
108 |
It has been finetuned for 3 epochs on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/).
|
109 |
|
110 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
```
|
|
|
|
|
|
|
112 |
{
|
113 |
"epoch": 3.0,
|
114 |
"eval_HasAns_exact": 79.65587044534414,
|
@@ -141,4 +154,4 @@ In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the effic
|
|
141 |
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
|
142 |
|
143 |
mDeBERTa is multilingual version of DeBERTa which use the same structure as DeBERTa and was trained with CC100 multilingual data.
|
144 |
-
The mDeBERTa V3 base model comes with 12 layers and a hidden size of 768. It has 86M backbone parameters with a vocabulary containing 250K tokens which introduces 190M parameters in the Embedding layer. This model was trained using the 2.5T CC100 data as XLM-R.
|
|
|
1 |
---
|
2 |
datasets:
|
3 |
- squad_v2
|
4 |
+
language:
|
5 |
- multilingual
|
6 |
- af
|
7 |
- am
|
|
|
63 |
- my
|
64 |
- ne
|
65 |
- nl
|
66 |
+
- 'no'
|
67 |
- om
|
68 |
- or
|
69 |
- pa
|
|
|
96 |
- xh
|
97 |
- yi
|
98 |
- zh
|
99 |
+
tags:
|
100 |
+
- deberta
|
101 |
+
- deberta-v3
|
102 |
+
- mdeberta
|
103 |
+
- question-answering
|
104 |
+
- qa
|
105 |
+
- multilingual
|
106 |
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
107 |
license: mit
|
108 |
---
|
109 |
## This model can be used for Extractive QA
|
110 |
It has been finetuned for 3 epochs on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/).
|
111 |
|
112 |
+
## Usage
|
113 |
+
```python
|
114 |
+
from transformers import pipeline
|
115 |
+
|
116 |
+
qa_model = pipeline("question-answering", model="timpal0l/mdeberta-v3-base-squad2")
|
117 |
+
question = "Where do I live?"
|
118 |
+
context = "My name is Tim and I live in Sweden."
|
119 |
+
qa_model(question = question, context = context)
|
120 |
+
# {'score': 0.975547730922699, 'start': 28, 'end': 36, 'answer': ' Sweden.'}
|
121 |
```
|
122 |
+
|
123 |
+
## Evaluation on SQuAD2.0 dev set
|
124 |
+
```bash
|
125 |
{
|
126 |
"epoch": 3.0,
|
127 |
"eval_HasAns_exact": 79.65587044534414,
|
|
|
154 |
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
|
155 |
|
156 |
mDeBERTa is multilingual version of DeBERTa which use the same structure as DeBERTa and was trained with CC100 multilingual data.
|
157 |
+
The mDeBERTa V3 base model comes with 12 layers and a hidden size of 768. It has 86M backbone parameters with a vocabulary containing 250K tokens which introduces 190M parameters in the Embedding layer. This model was trained using the 2.5T CC100 data as XLM-R.
|