timpal0l commited on
Commit
d4c2e94
1 Parent(s): 6902f66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -9
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  datasets:
3
  - squad_v2
4
- language:
5
  - multilingual
6
  - af
7
  - am
@@ -63,7 +63,7 @@ language:
63
  - my
64
  - ne
65
  - nl
66
- - no
67
  - om
68
  - or
69
  - pa
@@ -96,19 +96,32 @@ language:
96
  - xh
97
  - yi
98
  - zh
99
- tags:
100
- - deberta
101
- - deberta-v3
102
- - mdeberta
103
- - question-answering
 
 
104
  thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
105
  license: mit
106
  ---
107
  ## This model can be used for Extractive QA
108
  It has been finetuned for 3 epochs on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/).
109
 
110
- ## Evaluation on SQuAD2.0 dev set
 
 
 
 
 
 
 
 
111
  ```
 
 
 
112
  {
113
  "epoch": 3.0,
114
  "eval_HasAns_exact": 79.65587044534414,
@@ -141,4 +154,4 @@ In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the effic
141
  Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
142
 
143
  mDeBERTa is multilingual version of DeBERTa which use the same structure as DeBERTa and was trained with CC100 multilingual data.
144
- The mDeBERTa V3 base model comes with 12 layers and a hidden size of 768. It has 86M backbone parameters with a vocabulary containing 250K tokens which introduces 190M parameters in the Embedding layer. This model was trained using the 2.5T CC100 data as XLM-R.
 
1
  ---
2
  datasets:
3
  - squad_v2
4
+ language:
5
  - multilingual
6
  - af
7
  - am
 
63
  - my
64
  - ne
65
  - nl
66
+ - 'no'
67
  - om
68
  - or
69
  - pa
 
96
  - xh
97
  - yi
98
  - zh
99
+ tags:
100
+ - deberta
101
+ - deberta-v3
102
+ - mdeberta
103
+ - question-answering
104
+ - qa
105
+ - multilingual
106
  thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
107
  license: mit
108
  ---
109
  ## This model can be used for Extractive QA
110
  It has been finetuned for 3 epochs on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/).
111
 
112
+ ## Usage
113
+ ```python
114
+ from transformers import pipeline
115
+
116
+ qa_model = pipeline("question-answering", model="timpal0l/mdeberta-v3-base-squad2")
117
+ question = "Where do I live?"
118
+ context = "My name is Tim and I live in Sweden."
119
+ qa_model(question = question, context = context)
120
+ # {'score': 0.975547730922699, 'start': 28, 'end': 36, 'answer': ' Sweden.'}
121
  ```
122
+
123
+ ## Evaluation on SQuAD2.0 dev set
124
+ ```bash
125
  {
126
  "epoch": 3.0,
127
  "eval_HasAns_exact": 79.65587044534414,
 
154
  Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
155
 
156
  mDeBERTa is multilingual version of DeBERTa which use the same structure as DeBERTa and was trained with CC100 multilingual data.
157
+ The mDeBERTa V3 base model comes with 12 layers and a hidden size of 768. It has 86M backbone parameters with a vocabulary containing 250K tokens which introduces 190M parameters in the Embedding layer. This model was trained using the 2.5T CC100 data as XLM-R.