File size: 27,077 Bytes
58845c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d36298
 
58845c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d36298
58845c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d36298
58845c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import argparse
import time
import logging
import requests
import os
from PIL import Image
from io import BytesIO

from PIL import Image
import torch
from transformers import AutoTokenizer

from transformers import AutoTokenizer, AutoModelForCausalLM

from PIL import Image
from io import BytesIO
import base64

import torch
from transformers import StoppingCriteria

import math
import ast

# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
import dataclasses
from enum import auto, Enum
from typing import List, Tuple


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()
    PLAIN = auto()
    LLAMA_2 = auto()
    TINY_LLAMA = auto()
    QWEN_2 = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None
    version: str = "Unknown"

    skip_next: bool = False

    def get_prompt(self):
        messages = self.messages
        if len(messages) > 0 and type(messages[0][1]) is tuple:
            messages = self.messages.copy()
            init_role, init_msg = messages[0].copy()
            init_msg = init_msg[0].replace("<image>", "").strip()
            if 'mmtag' in self.version:
                messages[0] = (init_role, init_msg)
                messages.insert(0, (self.roles[0], "<Image><image></Image>"))
                messages.insert(1, (self.roles[1], "Received."))
            else:
                messages[0] = (init_role, "<image>\n" + init_msg)

        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep
            for role, message in messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(messages):
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
        elif self.sep_style == SeparatorStyle.MPT:
            ret = self.system + self.sep
            for role, message in messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + message + self.sep
                else:
                    ret += role
        elif self.sep_style == SeparatorStyle.LLAMA_2:
            wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
            wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
            ret = ""

            for i, (role, message) in enumerate(messages):
                if i == 0:
                    assert message, "first message should not be none"
                    assert role == self.roles[0], "first message should come from user"
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    if i == 0: message = wrap_sys(self.system) + message
                    if i % 2 == 0:
                        message = wrap_inst(message)
                        ret += self.sep + message
                    else:
                        ret += " " + message + " " + self.sep2
                else:
                    ret += ""
            ret = ret.lstrip(self.sep)
        elif self.sep_style == SeparatorStyle.TINY_LLAMA:
            sep = "</s>"
            wrap_sys = lambda msg: f"<|system|>\n{msg}\n"
            wrap_user = lambda msg: f"<|user|>\n{msg}\n"
            wrap_assistant = lambda msg: f"<|assistant|>\n{msg}"
            ret = ""

            for i, (role, message) in enumerate(messages):
                if i == 0:
                    assert message, "first message should not be none"
                    assert role == self.roles[0], "first message should come from user"
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    if i % 2 == 0:
                        message = wrap_user(message)
                        if i == 0:
                            message = wrap_sys(self.system) + message
                        ret += self.sep + message
                    else:
                        message = wrap_assistant(message) + self.sep2
                        ret += message
                else:
                    ret += "<|assistant|>\n"
            ret = ret.lstrip(self.sep)
        elif self.sep_style == SeparatorStyle.QWEN_2:
            ret = self.system + self.sep
            for role, message in messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + message + self.sep
                else:
                    ret += role
        elif self.sep_style == SeparatorStyle.PLAIN:
            seps = [self.sep, self.sep2]
            ret = self.system
            for i, (role, message) in enumerate(messages):
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += message + seps[i % 2]
                else:
                    ret += ""
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

        return ret

    def append_message(self, role, message):
        self.messages.append([role, message])

    def get_images(self, return_pil=False):
        images = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    from PIL import Image
                    msg, image, image_process_mode = msg
                    if image_process_mode == "Pad":
                        def expand2square(pil_img, background_color=(122, 116, 104)):
                            width, height = pil_img.size
                            if width == height:
                                return pil_img
                            elif width > height:
                                result = Image.new(pil_img.mode, (width, width), background_color)
                                result.paste(pil_img, (0, (width - height) // 2))
                                return result
                            else:
                                result = Image.new(pil_img.mode, (height, height), background_color)
                                result.paste(pil_img, ((height - width) // 2, 0))
                                return result
                        image = expand2square(image)
                    elif image_process_mode in ["Default", "Crop"]:
                        pass
                    elif image_process_mode == "Resize":
                        image = image.resize((336, 336))
                    else:
                        raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
                    max_hw, min_hw = max(image.size), min(image.size)
                    aspect_ratio = max_hw / min_hw
                    max_len, min_len = 800, 400
                    shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                    longest_edge = int(shortest_edge * aspect_ratio)
                    W, H = image.size
                    if longest_edge != max(image.size):
                        if H > W:
                            H, W = longest_edge, shortest_edge
                        else:
                            H, W = shortest_edge, longest_edge
                        image = image.resize((W, H))
                    if return_pil:
                        images.append(image)
                    else:
                        buffered = BytesIO()
                        image.save(buffered, format="PNG")
                        img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                        images.append(img_b64_str)
        return images

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    msg, image, image_process_mode = msg
                    max_hw, min_hw = max(image.size), min(image.size)
                    aspect_ratio = max_hw / min_hw
                    max_len, min_len = 800, 400
                    shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                    longest_edge = int(shortest_edge * aspect_ratio)
                    W, H = image.size
                    if H > W:
                        H, W = longest_edge, shortest_edge
                    else:
                        H, W = shortest_edge, longest_edge
                    image = image.resize((W, H))
                    buffered = BytesIO()
                    image.save(buffered, format="JPEG")
                    img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                    img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
                    msg = img_str + msg.replace('<image>', '').strip()
                    ret.append([msg, None])
                else:
                    ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            version=self.version)

    def dict(self):
        if len(self.get_images()) > 0:
            return {
                "system": self.system,
                "roles": self.roles,
                "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
                "offset": self.offset,
                "sep": self.sep,
                "sep2": self.sep2,
            }
        return {
            "system": self.system,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
        }




conv_phi_v0 = Conversation(
    system="A chat between a curious user and an artificial intelligence assistant. "
           "The assistant gives helpful, detailed, and polite answers to the user's questions.",
    roles=("USER", "ASSISTANT"),
    version="phi",
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.TWO,
    sep=" ",
    sep2="<|endoftext|>",
)



def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float('inf')

    for width, height in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit


## added by llava-1.6
def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image


## added by llava-1.6
def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches


## added by llava-1.6
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (tuple): The size of the input image in the format (width, height).
        grid_pinpoints (str): A string representation of a list of possible resolutions.
        patch_size (int): The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    width, height = select_best_resolution(image_size, possible_resolutions)
    return width // patch_size, height // patch_size


## added by llava-1.6
def process_anyres_image(image, processor, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions)
    image_padded = resize_and_pad_image(image, best_resolution)

    patches = divide_to_patches(image_padded, processor.crop_size['height'])

    image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))

    image_patches = [image_original_resize] + patches
    image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
                     for image_patch in image_patches]
    return torch.stack(image_patches, dim=0)


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def process_images(images, image_processor, model_cfg):
    image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
    new_images = []
    if image_aspect_ratio == 'pad':
        for image in images:
            image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
            image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            new_images.append(image)
    elif image_aspect_ratio == "anyres":
        for image in images:
            image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
            new_images.append(image)
    else:
        return image_processor(images, return_tensors='pt')['pixel_values']
    if all(x.shape == new_images[0].shape for x in new_images):
        new_images = torch.stack(new_images, dim=0)
    return new_images


def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids


def get_model_name_from_path(model_path):
    model_path = model_path.strip("/")
    model_paths = model_path.split("/")
    if model_paths[-1].startswith('checkpoint-'):
        return model_paths[-2] + "_" + model_paths[-1]
    else:
        return model_paths[-1]


class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = []
        self.max_keyword_len = 0
        for keyword in keywords:
            cur_keyword_ids = tokenizer(keyword).input_ids
            if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
                cur_keyword_ids = cur_keyword_ids[1:]
            if len(cur_keyword_ids) > self.max_keyword_len:
                self.max_keyword_len = len(cur_keyword_ids)
            self.keyword_ids.append(torch.tensor(cur_keyword_ids))
        self.tokenizer = tokenizer
        self.start_len = input_ids.shape[1]

    def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
        self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
        for keyword_id in self.keyword_ids:
            if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
                return True
        outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
        for keyword in self.keywords:
            if keyword in outputs:
                return True
        return False

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        outputs = []
        for i in range(output_ids.shape[0]):
            outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
        return all(outputs)



def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def generate(
    prompt: str,
    model: str,
    tokenizer = None,
    image: str = None,
    device: str = None,
    max_new_tokens: int = 1024,
    num_beams = 1,
    top_p=None,
    temperature=0.2
):
    if not device:
        if torch.cuda.is_available() and torch.cuda.device_count():
            device = "cuda:0"
            logging.warning(
                'inference device is not set, using cuda:0, %s',
                torch.cuda.get_device_name(0)
            )
        else:
            device = 'cpu'
            logging.warning(
                (
                    'No CUDA device detected, using cpu, '
                    'expect slower speeds.'
                )
            )

    if 'cuda' in device and not torch.cuda.is_available():
        raise ValueError('CUDA device requested but no CUDA device detected.')

    if isinstance(model, str):
        checkpoint_path = model
    # print(f'loading model from {checkpoint_path}...')
        model = AutoModelForCausalLM.from_pretrained(
            checkpoint_path,
            trust_remote_code=True
        )
    # print('model load over')
    config = model.config
    if tokenizer is None:
        tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False, model_max_length = config.tokenizer_model_max_length,
                padding_side = config.tokenizer_padding_side)
    image_processor = model.vision_tower._image_processor
    context_len = getattr(config, 'max_sequence_length', 2048)
    model.to(device).eval()


    if image is not None:
        prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt 
    conv = conv_phi_v0.copy()
    conv.append_message(conv.roles[0], prompt)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    if image is not None:
        # print('loading image...')
        image = load_image(image)
        # print('load image over')
        image_tensor = process_images(image, image_processor, config).to(model.device, dtype=torch.float16)

    input_ids = (
        tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
        .unsqueeze(0)
        .to(model.device, dtype=torch.float16)
    )
    # Generate
    stime = time.time()
    # stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    # keywords = [stop_str]
    # stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
    # print('start inference...')
    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            do_sample=True if temperature > 0 else False,
            temperature=temperature,
            top_p=top_p,
            num_beams=num_beams,
            pad_token_id=tokenizer.pad_token_id,
            max_new_tokens=max_new_tokens,
            use_cache=True,
            # stopping_criteria=[stopping_criteria],
        )

    # print('inference over')
    generation_time = time.time() - stime
    outputs = tokenizer.batch_decode(
        output_ids, skip_special_tokens=True
    )[0]
    # outputs = outputs.strip()
    # if outputs.endswith(stop_str):
    #     outputs = outputs[: -len(stop_str)]
    outputs = outputs.strip()

    return outputs, generation_time

def tinyllava_phi_generate_parser():
    """Argument Parser"""

    class KwargsParser(argparse.Action):
        """Parser action class to parse kwargs of form key=value"""
        def __call__(self, parser, namespace, values, option_string=None):
            setattr(namespace, self.dest, dict())
            for val in values:
                if '=' not in val:
                    raise ValueError(
                        (
                            'Argument parsing error, kwargs are expected in'
                            ' the form of key=value.'
                        )
                    )
                kwarg_k, kwarg_v = val.split('=')
                try:
                    converted_v = int(kwarg_v)
                except ValueError:
                    try:
                        converted_v = float(kwarg_v)
                    except ValueError:
                        converted_v = kwarg_v            
                getattr(namespace, self.dest)[kwarg_k] = converted_v

    parser = argparse.ArgumentParser('TinyLLaVA-Phi Generate Module')
    parser.add_argument(
        '--model',
        dest='model',
        help='Path to the hf converted model.',
        required=True,
        type=str,
    )
    parser.add_argument(
      '--prompt',
      dest='prompt',
      help='Prompt for LLM call.',
      default='',
      type=str,
    )
    parser.add_argument(
        '--device',
        dest='device',
        help='Device used for inference.',
        type=str,
    )
    parser.add_argument("--image", type=str, default=None)
    parser.add_argument("--temperature", type=float, default=0)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--max_new_tokens", type=int, default=512)
    return parser.parse_args()


if __name__ == '__main__':
    args = tinyllava_phi_generate_parser()

    output_text, genertaion_time = generate(
        prompt=args.prompt,
        image=args.image,
        model=args.model,
        device=args.device,
        max_new_tokens = args.max_new_tokens,
        num_beams = args.num_beams,
        top_p=args.top_p,
        temperature=args.temperature
    )

    print_txt = (
        f'\r\n{"=" * os.get_terminal_size().columns}\r\n'
        '\033[1m Prompt + Generated Output\033[0m\r\n'
        f'{"-" * os.get_terminal_size().columns}\r\n'
        f'{output_text}\r\n'
        f'{"-" * os.get_terminal_size().columns}\r\n'
        '\r\nGeneration took'
        f'\033[1m\033[92m {round(genertaion_time, 2)} \033[0m'
        'seconds.\r\n'
    )
    print(print_txt)