|
import argparse |
|
import time |
|
import logging |
|
import requests |
|
import os |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
from PIL import Image |
|
import torch |
|
from transformers import AutoTokenizer |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
from PIL import Image |
|
from io import BytesIO |
|
import base64 |
|
|
|
import torch |
|
from transformers import StoppingCriteria |
|
|
|
import math |
|
import ast |
|
|
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
IMAGE_PLACEHOLDER = "<image-placeholder>" |
|
import dataclasses |
|
from enum import auto, Enum |
|
from typing import List, Tuple |
|
|
|
|
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
SINGLE = auto() |
|
TWO = auto() |
|
MPT = auto() |
|
PLAIN = auto() |
|
LLAMA_2 = auto() |
|
TINY_LLAMA = auto() |
|
QWEN_2 = auto() |
|
|
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history.""" |
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
offset: int |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "###" |
|
sep2: str = None |
|
version: str = "Unknown" |
|
|
|
skip_next: bool = False |
|
|
|
def get_prompt(self): |
|
messages = self.messages |
|
if len(messages) > 0 and type(messages[0][1]) is tuple: |
|
messages = self.messages.copy() |
|
init_role, init_msg = messages[0].copy() |
|
init_msg = init_msg[0].replace("<image>", "").strip() |
|
if 'mmtag' in self.version: |
|
messages[0] = (init_role, init_msg) |
|
messages.insert(0, (self.roles[0], "<Image><image></Image>")) |
|
messages.insert(1, (self.roles[1], "Received.")) |
|
else: |
|
messages[0] = (init_role, "<image>\n" + init_msg) |
|
|
|
if self.sep_style == SeparatorStyle.SINGLE: |
|
ret = self.system + self.sep |
|
for role, message in messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + ": " + message + self.sep |
|
else: |
|
ret += role + ":" |
|
elif self.sep_style == SeparatorStyle.TWO: |
|
seps = [self.sep, self.sep2] |
|
ret = self.system + seps[0] |
|
for i, (role, message) in enumerate(messages): |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + ": " + message + seps[i % 2] |
|
else: |
|
ret += role + ":" |
|
elif self.sep_style == SeparatorStyle.MPT: |
|
ret = self.system + self.sep |
|
for role, message in messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + message + self.sep |
|
else: |
|
ret += role |
|
elif self.sep_style == SeparatorStyle.LLAMA_2: |
|
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg |
|
wrap_inst = lambda msg: f"[INST] {msg} [/INST]" |
|
ret = "" |
|
|
|
for i, (role, message) in enumerate(messages): |
|
if i == 0: |
|
assert message, "first message should not be none" |
|
assert role == self.roles[0], "first message should come from user" |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
if i == 0: message = wrap_sys(self.system) + message |
|
if i % 2 == 0: |
|
message = wrap_inst(message) |
|
ret += self.sep + message |
|
else: |
|
ret += " " + message + " " + self.sep2 |
|
else: |
|
ret += "" |
|
ret = ret.lstrip(self.sep) |
|
elif self.sep_style == SeparatorStyle.TINY_LLAMA: |
|
sep = "</s>" |
|
wrap_sys = lambda msg: f"<|system|>\n{msg}\n" |
|
wrap_user = lambda msg: f"<|user|>\n{msg}\n" |
|
wrap_assistant = lambda msg: f"<|assistant|>\n{msg}" |
|
ret = "" |
|
|
|
for i, (role, message) in enumerate(messages): |
|
if i == 0: |
|
assert message, "first message should not be none" |
|
assert role == self.roles[0], "first message should come from user" |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
if i % 2 == 0: |
|
message = wrap_user(message) |
|
if i == 0: |
|
message = wrap_sys(self.system) + message |
|
ret += self.sep + message |
|
else: |
|
message = wrap_assistant(message) + self.sep2 |
|
ret += message |
|
else: |
|
ret += "<|assistant|>\n" |
|
ret = ret.lstrip(self.sep) |
|
elif self.sep_style == SeparatorStyle.QWEN_2: |
|
ret = self.system + self.sep |
|
for role, message in messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + message + self.sep |
|
else: |
|
ret += role |
|
elif self.sep_style == SeparatorStyle.PLAIN: |
|
seps = [self.sep, self.sep2] |
|
ret = self.system |
|
for i, (role, message) in enumerate(messages): |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += message + seps[i % 2] |
|
else: |
|
ret += "" |
|
else: |
|
raise ValueError(f"Invalid style: {self.sep_style}") |
|
|
|
return ret |
|
|
|
def append_message(self, role, message): |
|
self.messages.append([role, message]) |
|
|
|
def get_images(self, return_pil=False): |
|
images = [] |
|
for i, (role, msg) in enumerate(self.messages[self.offset:]): |
|
if i % 2 == 0: |
|
if type(msg) is tuple: |
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
msg, image, image_process_mode = msg |
|
if image_process_mode == "Pad": |
|
def expand2square(pil_img, background_color=(122, 116, 104)): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
image = expand2square(image) |
|
elif image_process_mode in ["Default", "Crop"]: |
|
pass |
|
elif image_process_mode == "Resize": |
|
image = image.resize((336, 336)) |
|
else: |
|
raise ValueError(f"Invalid image_process_mode: {image_process_mode}") |
|
max_hw, min_hw = max(image.size), min(image.size) |
|
aspect_ratio = max_hw / min_hw |
|
max_len, min_len = 800, 400 |
|
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) |
|
longest_edge = int(shortest_edge * aspect_ratio) |
|
W, H = image.size |
|
if longest_edge != max(image.size): |
|
if H > W: |
|
H, W = longest_edge, shortest_edge |
|
else: |
|
H, W = shortest_edge, longest_edge |
|
image = image.resize((W, H)) |
|
if return_pil: |
|
images.append(image) |
|
else: |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode() |
|
images.append(img_b64_str) |
|
return images |
|
|
|
def to_gradio_chatbot(self): |
|
ret = [] |
|
for i, (role, msg) in enumerate(self.messages[self.offset:]): |
|
if i % 2 == 0: |
|
if type(msg) is tuple: |
|
import base64 |
|
from io import BytesIO |
|
msg, image, image_process_mode = msg |
|
max_hw, min_hw = max(image.size), min(image.size) |
|
aspect_ratio = max_hw / min_hw |
|
max_len, min_len = 800, 400 |
|
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) |
|
longest_edge = int(shortest_edge * aspect_ratio) |
|
W, H = image.size |
|
if H > W: |
|
H, W = longest_edge, shortest_edge |
|
else: |
|
H, W = shortest_edge, longest_edge |
|
image = image.resize((W, H)) |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode() |
|
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' |
|
msg = img_str + msg.replace('<image>', '').strip() |
|
ret.append([msg, None]) |
|
else: |
|
ret.append([msg, None]) |
|
else: |
|
ret[-1][-1] = msg |
|
return ret |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x, y] for x, y in self.messages], |
|
offset=self.offset, |
|
sep_style=self.sep_style, |
|
sep=self.sep, |
|
sep2=self.sep2, |
|
version=self.version) |
|
|
|
def dict(self): |
|
if len(self.get_images()) > 0: |
|
return { |
|
"system": self.system, |
|
"roles": self.roles, |
|
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], |
|
"offset": self.offset, |
|
"sep": self.sep, |
|
"sep2": self.sep2, |
|
} |
|
return { |
|
"system": self.system, |
|
"roles": self.roles, |
|
"messages": self.messages, |
|
"offset": self.offset, |
|
"sep": self.sep, |
|
"sep2": self.sep2, |
|
} |
|
|
|
|
|
|
|
|
|
conv_phi_v0 = Conversation( |
|
system="A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.", |
|
roles=("USER", "ASSISTANT"), |
|
version="phi", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2="<|endoftext|>", |
|
) |
|
|
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float('inf') |
|
|
|
for width, height in possible_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
|
|
|
|
def resize_and_pad_image(image, target_resolution): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
|
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
|
|
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
|
|
return new_image |
|
|
|
|
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
|
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
|
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (tuple): The size of the input image in the format (width, height). |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
patch_size (int): The size of each image patch. |
|
|
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
width, height = select_best_resolution(image_size, possible_resolutions) |
|
return width // patch_size, height // patch_size |
|
|
|
|
|
|
|
def process_anyres_image(image, processor, grid_pinpoints): |
|
""" |
|
Process an image with variable resolutions. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
processor: The image processor object. |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
|
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
best_resolution = select_best_resolution(image.size, possible_resolutions) |
|
image_padded = resize_and_pad_image(image, best_resolution) |
|
|
|
patches = divide_to_patches(image_padded, processor.crop_size['height']) |
|
|
|
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) |
|
|
|
image_patches = [image_original_resize] + patches |
|
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0] |
|
for image_patch in image_patches] |
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
def load_image_from_base64(image): |
|
return Image.open(BytesIO(base64.b64decode(image))) |
|
|
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
|
|
def process_images(images, image_processor, model_cfg): |
|
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) |
|
new_images = [] |
|
if image_aspect_ratio == 'pad': |
|
for image in images: |
|
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) |
|
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] |
|
new_images.append(image) |
|
elif image_aspect_ratio == "anyres": |
|
for image in images: |
|
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) |
|
new_images.append(image) |
|
else: |
|
return image_processor(images, return_tensors='pt')['pixel_values'] |
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
new_images = torch.stack(new_images, dim=0) |
|
return new_images |
|
|
|
|
|
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == 'pt': |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
return input_ids |
|
|
|
|
|
def get_model_name_from_path(model_path): |
|
model_path = model_path.strip("/") |
|
model_paths = model_path.split("/") |
|
if model_paths[-1].startswith('checkpoint-'): |
|
return model_paths[-2] + "_" + model_paths[-1] |
|
else: |
|
return model_paths[-1] |
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
self.max_keyword_len = 0 |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
if len(cur_keyword_ids) > self.max_keyword_len: |
|
self.max_keyword_len = len(cur_keyword_ids) |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
outputs = [] |
|
for i in range(output_ids.shape[0]): |
|
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) |
|
return all(outputs) |
|
|
|
|
|
|
|
def load_image(image_file): |
|
if image_file.startswith("http") or image_file.startswith("https"): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
else: |
|
image = Image.open(image_file).convert("RGB") |
|
return image |
|
|
|
|
|
def generate( |
|
prompt: str, |
|
model: str, |
|
tokenizer = None, |
|
image: str = None, |
|
device: str = None, |
|
max_new_tokens: int = 1024, |
|
num_beams = 1, |
|
top_p=None, |
|
temperature=0.2 |
|
): |
|
if not device: |
|
if torch.cuda.is_available() and torch.cuda.device_count(): |
|
device = "cuda:0" |
|
logging.warning( |
|
'inference device is not set, using cuda:0, %s', |
|
torch.cuda.get_device_name(0) |
|
) |
|
else: |
|
device = 'cpu' |
|
logging.warning( |
|
( |
|
'No CUDA device detected, using cpu, ' |
|
'expect slower speeds.' |
|
) |
|
) |
|
|
|
if 'cuda' in device and not torch.cuda.is_available(): |
|
raise ValueError('CUDA device requested but no CUDA device detected.') |
|
|
|
if isinstance(model, str): |
|
checkpoint_path = model |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
checkpoint_path, |
|
trust_remote_code=True |
|
) |
|
|
|
config = model.config |
|
if tokenizer is None: |
|
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False, model_max_length = config.tokenizer_model_max_length, |
|
padding_side = config.tokenizer_padding_side) |
|
image_processor = model.vision_tower._image_processor |
|
context_len = getattr(config, 'max_sequence_length', 2048) |
|
model.to(device).eval() |
|
|
|
|
|
if image is not None: |
|
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt |
|
conv = conv_phi_v0.copy() |
|
conv.append_message(conv.roles[0], prompt) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
if image is not None: |
|
|
|
image = load_image(image) |
|
|
|
image_tensor = process_images(image, image_processor, config).to(model.device, dtype=torch.float16) |
|
|
|
input_ids = ( |
|
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") |
|
.unsqueeze(0) |
|
.to(model.device, dtype=torch.float16) |
|
) |
|
|
|
stime = time.time() |
|
|
|
|
|
|
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor, |
|
do_sample=True if temperature > 0 else False, |
|
temperature=temperature, |
|
top_p=top_p, |
|
num_beams=num_beams, |
|
pad_token_id=tokenizer.pad_token_id, |
|
max_new_tokens=max_new_tokens, |
|
use_cache=True, |
|
|
|
) |
|
|
|
|
|
generation_time = time.time() - stime |
|
outputs = tokenizer.batch_decode( |
|
output_ids, skip_special_tokens=True |
|
)[0] |
|
|
|
|
|
|
|
outputs = outputs.strip() |
|
|
|
return outputs, generation_time |
|
|
|
def tinyllava_phi_generate_parser(): |
|
"""Argument Parser""" |
|
|
|
class KwargsParser(argparse.Action): |
|
"""Parser action class to parse kwargs of form key=value""" |
|
def __call__(self, parser, namespace, values, option_string=None): |
|
setattr(namespace, self.dest, dict()) |
|
for val in values: |
|
if '=' not in val: |
|
raise ValueError( |
|
( |
|
'Argument parsing error, kwargs are expected in' |
|
' the form of key=value.' |
|
) |
|
) |
|
kwarg_k, kwarg_v = val.split('=') |
|
try: |
|
converted_v = int(kwarg_v) |
|
except ValueError: |
|
try: |
|
converted_v = float(kwarg_v) |
|
except ValueError: |
|
converted_v = kwarg_v |
|
getattr(namespace, self.dest)[kwarg_k] = converted_v |
|
|
|
parser = argparse.ArgumentParser('TinyLLaVA-Phi Generate Module') |
|
parser.add_argument( |
|
'--model', |
|
dest='model', |
|
help='Path to the hf converted model.', |
|
required=True, |
|
type=str, |
|
) |
|
parser.add_argument( |
|
'--prompt', |
|
dest='prompt', |
|
help='Prompt for LLM call.', |
|
default='', |
|
type=str, |
|
) |
|
parser.add_argument( |
|
'--device', |
|
dest='device', |
|
help='Device used for inference.', |
|
type=str, |
|
) |
|
parser.add_argument("--image", type=str, default=None) |
|
parser.add_argument("--temperature", type=float, default=0) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
parser.add_argument("--max_new_tokens", type=int, default=512) |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == '__main__': |
|
args = tinyllava_phi_generate_parser() |
|
|
|
output_text, genertaion_time = generate( |
|
prompt=args.prompt, |
|
image=args.image, |
|
model=args.model, |
|
device=args.device, |
|
max_new_tokens = args.max_new_tokens, |
|
num_beams = args.num_beams, |
|
top_p=args.top_p, |
|
temperature=args.temperature |
|
) |
|
|
|
print_txt = ( |
|
f'\r\n{"=" * os.get_terminal_size().columns}\r\n' |
|
'\033[1m Prompt + Generated Output\033[0m\r\n' |
|
f'{"-" * os.get_terminal_size().columns}\r\n' |
|
f'{output_text}\r\n' |
|
f'{"-" * os.get_terminal_size().columns}\r\n' |
|
'\r\nGeneration took' |
|
f'\033[1m\033[92m {round(genertaion_time, 2)} \033[0m' |
|
'seconds.\r\n' |
|
) |
|
print(print_txt) |