tmnam20 commited on
Commit
a1e642e
1 Parent(s): 2e39b2b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/mdeberta-v3-base
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: mdeberta-v3-base-mnli-10
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tmnam20/VieGLUE/MNLI
20
+ type: tmnam20/VieGLUE
21
+ config: mnli
22
+ split: validation_matched
23
+ args: mnli
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8430634662327096
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # mdeberta-v3-base-mnli-10
34
+
35
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MNLI dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.4642
38
+ - Accuracy: 0.8431
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 10
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
69
+ | 0.5294 | 0.41 | 5000 | 0.4986 | 0.8037 |
70
+ | 0.4856 | 0.81 | 10000 | 0.4593 | 0.8250 |
71
+ | 0.3976 | 1.22 | 15000 | 0.4776 | 0.8271 |
72
+ | 0.4154 | 1.63 | 20000 | 0.4680 | 0.8222 |
73
+ | 0.2933 | 2.04 | 25000 | 0.5138 | 0.8304 |
74
+ | 0.3186 | 2.44 | 30000 | 0.4813 | 0.8320 |
75
+ | 0.3196 | 2.85 | 35000 | 0.4795 | 0.8331 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.35.2
81
+ - Pytorch 2.2.0.dev20231203+cu121
82
+ - Datasets 2.15.0
83
+ - Tokenizers 0.15.0