Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: mit
|
5 |
+
base_model: microsoft/mdeberta-v3-base
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- tmnam20/VieGLUE
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: mdeberta-v3-base-mnli-10
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Text Classification
|
17 |
+
type: text-classification
|
18 |
+
dataset:
|
19 |
+
name: tmnam20/VieGLUE/MNLI
|
20 |
+
type: tmnam20/VieGLUE
|
21 |
+
config: mnli
|
22 |
+
split: validation_matched
|
23 |
+
args: mnli
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.8430634662327096
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# mdeberta-v3-base-mnli-10
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MNLI dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.4642
|
38 |
+
- Accuracy: 0.8431
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 2e-05
|
58 |
+
- train_batch_size: 32
|
59 |
+
- eval_batch_size: 16
|
60 |
+
- seed: 10
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 3.0
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
69 |
+
| 0.5294 | 0.41 | 5000 | 0.4986 | 0.8037 |
|
70 |
+
| 0.4856 | 0.81 | 10000 | 0.4593 | 0.8250 |
|
71 |
+
| 0.3976 | 1.22 | 15000 | 0.4776 | 0.8271 |
|
72 |
+
| 0.4154 | 1.63 | 20000 | 0.4680 | 0.8222 |
|
73 |
+
| 0.2933 | 2.04 | 25000 | 0.5138 | 0.8304 |
|
74 |
+
| 0.3186 | 2.44 | 30000 | 0.4813 | 0.8320 |
|
75 |
+
| 0.3196 | 2.85 | 35000 | 0.4795 | 0.8331 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.35.2
|
81 |
+
- Pytorch 2.2.0.dev20231203+cu121
|
82 |
+
- Datasets 2.15.0
|
83 |
+
- Tokenizers 0.15.0
|