--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: mdeberta-v3-base-qqp-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8998268612416522 - name: F1 type: f1 value: 0.8668551515550004 --- # mdeberta-v3-base-qqp-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8998 - F1: 0.8669 - Combined Score: 0.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.2833 | 0.44 | 5000 | 0.3087 | 0.8708 | 0.8217 | 0.8462 | | 0.2702 | 0.88 | 10000 | 0.2763 | 0.8818 | 0.8421 | 0.8619 | | 0.2269 | 1.32 | 15000 | 0.2819 | 0.8883 | 0.8469 | 0.8676 | | 0.2182 | 1.76 | 20000 | 0.2728 | 0.8929 | 0.8599 | 0.8764 | | 0.1682 | 2.2 | 25000 | 0.2922 | 0.8971 | 0.8613 | 0.8792 | | 0.175 | 2.64 | 30000 | 0.2755 | 0.8981 | 0.8635 | 0.8808 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0