model update
Browse files- README.md +176 -0
- eval/{metric.json → metric.test_2020.json} +1 -1
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-base-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6555135815794207
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6807821646531323
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6320536540240518
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5958197063152341
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6249946723205074
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5736622995381765
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7780043175821539
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.8079461950429693
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7502023823291315
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6389047347404451
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.7093096896770108
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5812143227815257
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.586121467459777
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6621669635440725
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5294767225396645
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7438676554478039
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8258391386953768
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6766995329527763
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-base-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6555135815794207
|
94 |
+
- Precision (micro): 0.6807821646531323
|
95 |
+
- Recall (micro): 0.6320536540240518
|
96 |
+
- F1 (macro): 0.5958197063152341
|
97 |
+
- Precision (macro): 0.6249946723205074
|
98 |
+
- Recall (macro): 0.5736622995381765
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.49599012954966076
|
104 |
+
- creative_work: 0.40063091482649843
|
105 |
+
- event: 0.47287615148413514
|
106 |
+
- group: 0.6206664422753282
|
107 |
+
- location: 0.6798096532970768
|
108 |
+
- person: 0.8351528384279476
|
109 |
+
- product: 0.6656118143459916
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6458952197843215, 0.6643997426393443]
|
114 |
+
- 95%: [0.6443089692503373, 0.6658257158915145]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6458952197843215, 0.6643997426393443]
|
117 |
+
- 95%: [0.6443089692503373, 0.6658257158915145]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-base-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-base-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-base-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: vinai/bertweet-base
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-base-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/{metric.json → metric.test_2020.json}
RENAMED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"micro/f1": 0.6389047347404451, "micro/f1_ci": {"90": [0.6187593935345156, 0.6584639871206162], "95": [0.6145490760162841, 0.6627502292906674]}, "micro/recall": 0.5812143227815257, "micro/precision": 0.7093096896770108, "macro/f1": 0.586121467459777, "macro/f1_ci": {"90": [0.5621903624073958, 0.6070822851718417], "95": [0.5579615035485642, 0.6117235352428714]}, "macro/recall": 0.5294767225396645, "macro/precision": 0.6621669635440725, "per_entity_metric": {"corporation": {"f1": 0.5438066465256798, "f1_ci": {"90": [0.4757904290634208, 0.6006616735627367], "95": [0.4604531711048777, 0.6162243446453973]}, "precision": 0.6428571428571429, "recall": 0.4712041884816754}, "creative_work": {"f1": 0.45051194539249145, "f1_ci": {"90": [0.3833661885663789, 0.5145250175345909], "95": [0.3745328676905309, 0.5244931327665141]}, "precision": 0.5789473684210527, "recall": 0.3687150837988827}, "event": {"f1": 0.4197002141327623, "f1_ci": {"90": [0.3664302564646572, 0.46942169328928907], "95": [0.35712632275132267, 0.47826311071268485]}, "precision": 0.48514851485148514, "recall": 0.36981132075471695}, "group": {"f1": 0.5588235294117647, "f1_ci": {"90": [0.5081523214770568, 0.6080405121136144], "95": [0.49904922344448926, 0.6185954944178629]}, "precision": 0.6523605150214592, "recall": 0.4887459807073955}, "location": {"f1": 0.6602564102564102, "f1_ci": {"90": [0.5993669608811564, 0.7197252248114239], "95": [0.5878272065772066, 0.7295617970622579]}, "precision": 0.7006802721088435, "recall": 0.6242424242424243}, "person": {"f1": 0.8336192109777015, "f1_ci": {"90": [0.8076141024001363, 0.8562484124105687], "95": [0.8038348561764808, 0.8596338619451357]}, "precision": 0.8526315789473684, "recall": 0.8154362416107382}, "product": {"f1": 0.6361323155216285, "f1_ci": {"90": [0.5794345441276866, 0.6856165902940188], "95": [0.5674891662127922, 0.6944029017164559]}, "precision": 0.7225433526011561, "recall": 0.5681818181818182}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6555135815794207, "micro/f1_ci": {"90": [0.6458952197843215, 0.6643997426393443], "95": [0.6443089692503373, 0.6658257158915145]}, "micro/recall": 0.6320536540240518, "micro/precision": 0.6807821646531323, "macro/f1": 0.5958197063152341, "macro/f1_ci": {"90": [0.585785434411046, 0.6053748531850129], "95": [0.5838402026896898, 0.6072114575354797]}, "macro/recall": 0.5736622995381765, "macro/precision": 0.6249946723205074, "per_entity_metric": {"corporation": {"f1": 0.49599012954966076, "f1_ci": {"90": [0.46883518739617464, 0.522878197204526], "95": [0.4619099785663253, 0.5290631359930873]}, "precision": 0.5575589459084604, "recall": 0.44666666666666666}, "creative_work": {"f1": 0.40063091482649843, "f1_ci": {"90": [0.36874728260869566, 0.43303929430633514], "95": [0.3629171852523146, 0.43848724048960525]}, "precision": 0.4729981378026071, "recall": 0.34746922024623805}, "event": {"f1": 0.47287615148413514, "f1_ci": {"90": [0.44740757125719577, 0.49634094981119414], "95": [0.4430748367654445, 0.5009967828889779]}, "precision": 0.5403508771929825, "recall": 0.42038216560509556}, "group": {"f1": 0.6206664422753282, "f1_ci": {"90": [0.5997751796772071, 0.6415149815388977], "95": [0.5964844757099186, 0.6457991975341445]}, "precision": 0.6345492085340675, "recall": 0.6073781291172595}, "location": {"f1": 0.6798096532970768, "f1_ci": {"90": [0.6518312969865437, 0.7069473970234486], "95": [0.6458321283960411, 0.7113758984903604]}, "precision": 0.6622516556291391, "recall": 0.6983240223463687}, "person": {"f1": 0.8351528384279476, "f1_ci": {"90": [0.8242736044555532, 0.8456305452479886], "95": [0.8225215199841636, 0.8476744109543876]}, "precision": 0.8243534482758621, "recall": 0.8462389380530974}, "product": {"f1": 0.6656118143459916, "f1_ci": {"90": [0.6426097657451765, 0.6862539349422875], "95": [0.6373492325760903, 0.6910826330952685]}, "precision": 0.6829004329004329, "recall": 0.6491769547325102}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7438676554478039, "micro/f1_ci": {}, "micro/recall": 0.6766995329527763, "micro/precision": 0.8258391386953768, "macro/f1": 0.7438676554478039, "macro/f1_ci": {}, "macro/recall": 0.6766995329527763, "macro/precision": 0.8258391386953768}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7780043175821539, "micro/f1_ci": {}, "micro/recall": 0.7502023823291315, "micro/precision": 0.8079461950429693, "macro/f1": 0.7780043175821539, "macro/f1_ci": {}, "macro/recall": 0.7502023823291315, "macro/precision": 0.8079461950429693}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-base", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|