model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6632769652650823
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6554878048780488
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6712534690101758
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6096477771855761
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6042443991246051
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6191008735553379
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7900359938296291
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.780713640469738
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7995836706372152
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6439847577572129
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6771608471665712
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6139076284379865
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6008744778169367
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6358142893696356
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5742193301311931
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7552409474543968
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7943871706758304
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7197716658017644
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/roberta-large-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6632769652650823
|
94 |
+
- Precision (micro): 0.6554878048780488
|
95 |
+
- Recall (micro): 0.6712534690101758
|
96 |
+
- F1 (macro): 0.6096477771855761
|
97 |
+
- Precision (macro): 0.6042443991246051
|
98 |
+
- Recall (macro): 0.6191008735553379
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5224148236700539
|
104 |
+
- creative_work: 0.45186640471512773
|
105 |
+
- event: 0.4894837476099427
|
106 |
+
- group: 0.6327722432153899
|
107 |
+
- location: 0.6692258477287268
|
108 |
+
- person: 0.838405036726128
|
109 |
+
- product: 0.6633663366336633
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6546824558783396, 0.6722355436189195]
|
114 |
+
- 95%: [0.6527609558375069, 0.6741666937877734]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6546824558783396, 0.6722355436189195]
|
117 |
+
- 95%: [0.6527609558375069, 0.6741666937877734]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/roberta-large-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: roberta-large
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.6501650165016502, "micro/f1_ci": {}, "micro/recall": 0.6310731446876668, "micro/precision": 0.6704480998298356, "macro/f1": 0.6005028651678407, "macro/f1_ci": {}, "macro/recall": 0.5837622163983479, "macro/precision": 0.621752223375048, "per_entity_metric": {"corporation": {"f1": 0.5413105413105412, "f1_ci": {}, "precision": 0.6012658227848101, "recall": 0.49222797927461137}, "creative_work": {"f1": 0.5171339563862928, "f1_ci": {}, "precision": 0.5220125786163522, "recall": 0.5123456790123457}, "event": {"f1": 0.3730337078651686, "f1_ci": {}, "precision": 0.415, "recall": 0.33877551020408164}, "group": {"f1": 0.6291079812206571, "f1_ci": {}, "precision": 0.6860068259385665, "recall": 0.5809248554913294}, "location": {"f1": 0.6686746987951807, "f1_ci": {}, "precision": 0.6568047337278107, "recall": 0.6809815950920245}, "person": {"f1": 0.8540344514959203, "f1_ci": {}, "precision": 0.8263157894736842, "recall": 0.8836772983114447}, "product": {"f1": 0.6202247191011236, "f1_ci": {}, "precision": 0.6448598130841121, "recall": 0.5974025974025974}}}, "2021.test": {"micro/f1": 0.6632769652650823, "micro/f1_ci": {"90": [0.6546824558783396, 0.6722355436189195], "95": [0.6527609558375069, 0.6741666937877734]}, "micro/recall": 0.6712534690101758, "micro/precision": 0.6554878048780488, "macro/f1": 0.6096477771855761, "macro/f1_ci": {"90": [0.6000033399344015, 0.6196382573823579], "95": [0.5981472384000703, 0.6215975643766474]}, "macro/recall": 0.6191008735553379, "macro/precision": 0.6042443991246051, "per_entity_metric": {"corporation": {"f1": 0.5224148236700539, "f1_ci": {"90": [0.49575230566534917, 0.548428873717759], "95": [0.49180182879678314, 0.5536876221847715]}, "precision": 0.5653298835705045, "recall": 0.4855555555555556}, "creative_work": {"f1": 0.45186640471512773, "f1_ci": {"90": [0.4220381822268108, 0.4839308609644777], "95": [0.4154910463113729, 0.48911260537307555]}, "precision": 0.4334170854271357, "recall": 0.4719562243502052}, "event": {"f1": 0.4894837476099427, "f1_ci": {"90": [0.4661296765605938, 0.510871201463544], "95": [0.4615384615384615, 0.516411878785732]}, "precision": 0.5156092648539778, "recall": 0.4658780709736124}, "group": {"f1": 0.6327722432153899, "f1_ci": {"90": [0.6127003027617782, 0.6543839434706372], "95": [0.6093291625393491, 0.6588729726962956]}, "precision": 0.6611629576453697, "recall": 0.6067193675889329}, "location": {"f1": 0.6692258477287268, "f1_ci": {"90": [0.6417970501525123, 0.6963076846900378], "95": [0.6367998717602004, 0.7017981808437215]}, "precision": 0.6174734356552538, "recall": 0.7304469273743017}, "person": {"f1": 0.838405036726128, "f1_ci": {"90": [0.8282701377388866, 0.8495293562513028], "95": [0.825632170233011, 0.851578528092547]}, "precision": 0.7974051896207585, "recall": 0.8838495575221239}, "product": {"f1": 0.6633663366336633, "f1_ci": {"90": [0.6417739190805534, 0.6847604430802081], "95": [0.637114780619813, 0.689184375235439]}, "precision": 0.6393129770992366, "recall": 0.6893004115226338}}}, "2020.test": {"micro/f1": 0.6439847577572129, "micro/f1_ci": {"90": [0.6239511351712037, 0.6636956588748724], "95": [0.6202890037120405, 0.6672202398213474]}, "micro/recall": 0.6139076284379865, "micro/precision": 0.6771608471665712, "macro/f1": 0.6008744778169367, "macro/f1_ci": {"90": [0.5782367510542764, 0.6219123487136012], "95": [0.5732090094451493, 0.6256935746402632]}, "macro/recall": 0.5742193301311931, "macro/precision": 0.6358142893696356, "per_entity_metric": {"corporation": {"f1": 0.5344827586206895, "f1_ci": {"90": [0.46733010287597426, 0.5928074904241737], "95": [0.4548436580892954, 0.6016792777061768]}, "precision": 0.5923566878980892, "recall": 0.4869109947643979}, "creative_work": {"f1": 0.5027322404371585, "f1_ci": {"90": [0.4469743400143622, 0.5552825552825553], "95": [0.43710669569951005, 0.5633915193287383]}, "precision": 0.4919786096256685, "recall": 0.5139664804469274}, "event": {"f1": 0.46680080482897385, "f1_ci": {"90": [0.4107729801228506, 0.5203104053512446], "95": [0.4024955652314143, 0.5313219588102243]}, "precision": 0.5, "recall": 0.4377358490566038}, "group": {"f1": 0.5725190839694656, "f1_ci": {"90": [0.5231821675037455, 0.6240227074235808], "95": [0.5101295909346619, 0.6312023177209077]}, "precision": 0.704225352112676, "recall": 0.48231511254019294}, "location": {"f1": 0.654434250764526, "f1_ci": {"90": [0.5903994977449776, 0.7104554590942137], "95": [0.5794875818846374, 0.7240381663767523]}, "precision": 0.6604938271604939, "recall": 0.6484848484848484}, "person": {"f1": 0.81787521079258, "f1_ci": {"90": [0.7923931517380374, 0.8422851983243039], "95": [0.7870345804988661, 0.8482340257519794]}, "precision": 0.8220338983050848, "recall": 0.8137583892617449}, "product": {"f1": 0.6572769953051644, "f1_ci": {"90": [0.6066135800653779, 0.707374149659864], "95": [0.5938903100310432, 0.7184158092104591]}, "precision": 0.6796116504854369, "recall": 0.6363636363636364}}}, "2021.test (span detection)": {"micro/f1": 0.7900359938296291, "micro/f1_ci": {}, "micro/recall": 0.7995836706372152, "micro/precision": 0.780713640469738, "macro/f1": 0.7900359938296291, "macro/f1_ci": {}, "macro/recall": 0.7995836706372152, "macro/precision": 0.780713640469738}, "2020.test (span detection)": {"micro/f1": 0.7552409474543968, "micro/f1_ci": {}, "micro/recall": 0.7197716658017644, "micro/precision": 0.7943871706758304, "macro/f1": 0.7552409474543968, "macro/f1_ci": {}, "macro/recall": 0.7197716658017644, "macro/precision": 0.7943871706758304}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6439847577572129, "micro/f1_ci": {"90": [0.6239511351712037, 0.6636956588748724], "95": [0.6202890037120405, 0.6672202398213474]}, "micro/recall": 0.6139076284379865, "micro/precision": 0.6771608471665712, "macro/f1": 0.6008744778169367, "macro/f1_ci": {"90": [0.5782367510542764, 0.6219123487136012], "95": [0.5732090094451493, 0.6256935746402632]}, "macro/recall": 0.5742193301311931, "macro/precision": 0.6358142893696356, "per_entity_metric": {"corporation": {"f1": 0.5344827586206895, "f1_ci": {"90": [0.46733010287597426, 0.5928074904241737], "95": [0.4548436580892954, 0.6016792777061768]}, "precision": 0.5923566878980892, "recall": 0.4869109947643979}, "creative_work": {"f1": 0.5027322404371585, "f1_ci": {"90": [0.4469743400143622, 0.5552825552825553], "95": [0.43710669569951005, 0.5633915193287383]}, "precision": 0.4919786096256685, "recall": 0.5139664804469274}, "event": {"f1": 0.46680080482897385, "f1_ci": {"90": [0.4107729801228506, 0.5203104053512446], "95": [0.4024955652314143, 0.5313219588102243]}, "precision": 0.5, "recall": 0.4377358490566038}, "group": {"f1": 0.5725190839694656, "f1_ci": {"90": [0.5231821675037455, 0.6240227074235808], "95": [0.5101295909346619, 0.6312023177209077]}, "precision": 0.704225352112676, "recall": 0.48231511254019294}, "location": {"f1": 0.654434250764526, "f1_ci": {"90": [0.5903994977449776, 0.7104554590942137], "95": [0.5794875818846374, 0.7240381663767523]}, "precision": 0.6604938271604939, "recall": 0.6484848484848484}, "person": {"f1": 0.81787521079258, "f1_ci": {"90": [0.7923931517380374, 0.8422851983243039], "95": [0.7870345804988661, 0.8482340257519794]}, "precision": 0.8220338983050848, "recall": 0.8137583892617449}, "product": {"f1": 0.6572769953051644, "f1_ci": {"90": [0.6066135800653779, 0.707374149659864], "95": [0.5938903100310432, 0.7184158092104591]}, "precision": 0.6796116504854369, "recall": 0.6363636363636364}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6632769652650823, "micro/f1_ci": {"90": [0.6546824558783396, 0.6722355436189195], "95": [0.6527609558375069, 0.6741666937877734]}, "micro/recall": 0.6712534690101758, "micro/precision": 0.6554878048780488, "macro/f1": 0.6096477771855761, "macro/f1_ci": {"90": [0.6000033399344015, 0.6196382573823579], "95": [0.5981472384000703, 0.6215975643766474]}, "macro/recall": 0.6191008735553379, "macro/precision": 0.6042443991246051, "per_entity_metric": {"corporation": {"f1": 0.5224148236700539, "f1_ci": {"90": [0.49575230566534917, 0.548428873717759], "95": [0.49180182879678314, 0.5536876221847715]}, "precision": 0.5653298835705045, "recall": 0.4855555555555556}, "creative_work": {"f1": 0.45186640471512773, "f1_ci": {"90": [0.4220381822268108, 0.4839308609644777], "95": [0.4154910463113729, 0.48911260537307555]}, "precision": 0.4334170854271357, "recall": 0.4719562243502052}, "event": {"f1": 0.4894837476099427, "f1_ci": {"90": [0.4661296765605938, 0.510871201463544], "95": [0.4615384615384615, 0.516411878785732]}, "precision": 0.5156092648539778, "recall": 0.4658780709736124}, "group": {"f1": 0.6327722432153899, "f1_ci": {"90": [0.6127003027617782, 0.6543839434706372], "95": [0.6093291625393491, 0.6588729726962956]}, "precision": 0.6611629576453697, "recall": 0.6067193675889329}, "location": {"f1": 0.6692258477287268, "f1_ci": {"90": [0.6417970501525123, 0.6963076846900378], "95": [0.6367998717602004, 0.7017981808437215]}, "precision": 0.6174734356552538, "recall": 0.7304469273743017}, "person": {"f1": 0.838405036726128, "f1_ci": {"90": [0.8282701377388866, 0.8495293562513028], "95": [0.825632170233011, 0.851578528092547]}, "precision": 0.7974051896207585, "recall": 0.8838495575221239}, "product": {"f1": 0.6633663366336633, "f1_ci": {"90": [0.6417739190805534, 0.6847604430802081], "95": [0.637114780619813, 0.689184375235439]}, "precision": 0.6393129770992366, "recall": 0.6893004115226338}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7552409474543968, "micro/f1_ci": {}, "micro/recall": 0.7197716658017644, "micro/precision": 0.7943871706758304, "macro/f1": 0.7552409474543968, "macro/f1_ci": {}, "macro/recall": 0.7197716658017644, "macro/precision": 0.7943871706758304}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7900359938296291, "micro/f1_ci": {}, "micro/recall": 0.7995836706372152, "micro/precision": 0.780713640469738, "macro/f1": 0.7900359938296291, "macro/f1_ci": {}, "macro/recall": 0.7995836706372152, "macro/precision": 0.780713640469738}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|