model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6567966159826227
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6494460773230839
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6643154486586494
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6099755599654287
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.602661693428744
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6189811354202427
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7888869833647745
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7800135654533122
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7979646120041632
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6545553145336225
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6854060193072118
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6263622210690192
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6121643911579755
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6403532739362632
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5898647290448411
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7643070246813126
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8005681818181818
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7311883757135443
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6567966159826227
|
94 |
+
- Precision (micro): 0.6494460773230839
|
95 |
+
- Recall (micro): 0.6643154486586494
|
96 |
+
- F1 (macro): 0.6099755599654287
|
97 |
+
- Precision (macro): 0.602661693428744
|
98 |
+
- Recall (macro): 0.6189811354202427
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5087071240105541
|
104 |
+
- creative_work: 0.4729907773386035
|
105 |
+
- event: 0.48405253283302063
|
106 |
+
- group: 0.6147885050048434
|
107 |
+
- location: 0.679419525065963
|
108 |
+
- person: 0.83927591881514
|
109 |
+
- product: 0.6705945366898768
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.648368394653773, 0.6664006471768674]
|
114 |
+
- 95%: [0.646545111092117, 0.6680503208004025]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.648368394653773, 0.6664006471768674]
|
117 |
+
- 95%: [0.646545111092117, 0.6680503208004025]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-2019-90m
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6393525543753161, "micro/f1_ci": {}, "micro/recall": 0.632, "micro/precision": 0.646878198567042, "macro/f1": 0.5955739662265487, "macro/f1_ci": {}, "macro/recall": 0.5933953061891987, "macro/precision": 0.6021591570769812, "per_entity_metric": {"corporation": {"f1": 0.6132075471698113, "f1_ci": {}, "precision": 0.5909090909090909, "recall": 0.6372549019607843}, "creative_work": {"f1": 0.4230769230769231, "f1_ci": {}, "precision": 0.4024390243902439, "recall": 0.44594594594594594}, "event": {"f1": 0.41004184100418406, "f1_ci": {}, "precision": 0.4537037037037037, "recall": 0.37404580152671757}, "group": {"f1": 0.6143497757847532, "f1_ci": {}, "precision": 0.6255707762557078, "recall": 0.6035242290748899}, "location": {"f1": 0.6405228758169934, "f1_ci": {}, "precision": 0.6049382716049383, "recall": 0.6805555555555556}, "person": {"f1": 0.8210526315789473, "f1_ci": {}, "precision": 0.8153310104529616, "recall": 0.8268551236749117}, "product": {"f1": 0.6467661691542289, "f1_ci": {}, "precision": 0.7222222222222222, "recall": 0.5855855855855856}}}, "2021.test": {"micro/f1": 0.6567966159826227, "micro/f1_ci": {"90": [0.648368394653773, 0.6664006471768674], "95": [0.646545111092117, 0.6680503208004025]}, "micro/recall": 0.6643154486586494, "micro/precision": 0.6494460773230839, "macro/f1": 0.6099755599654287, "macro/f1_ci": {"90": [0.5996849808261219, 0.6196609939303647], "95": [0.5981068219009371, 0.6213388278430806]}, "macro/recall": 0.6189811354202427, "macro/precision": 0.602661693428744, "per_entity_metric": {"corporation": {"f1": 0.5087071240105541, "f1_ci": {"90": [0.48418645598643384, 0.5346670166688542], "95": [0.4789882509840839, 0.5378380150591427]}, "precision": 0.4844221105527638, "recall": 0.5355555555555556}, "creative_work": {"f1": 0.4729907773386035, "f1_ci": {"90": [0.44239598560481413, 0.5042078308369256], "95": [0.43621394580304024, 0.510041651317275]}, "precision": 0.45616264294790343, "recall": 0.4911080711354309}, "event": {"f1": 0.48405253283302063, "f1_ci": {"90": [0.45995907383110685, 0.5078510542844324], "95": [0.4572237113916049, 0.5114127149849642]}, "precision": 0.4995159728944821, "recall": 0.4695177434030937}, "group": {"f1": 0.6147885050048434, "f1_ci": {"90": [0.5942964585813152, 0.6367114602499198], "95": [0.5886815262199213, 0.6417294334888041]}, "precision": 0.6029132362254591, "recall": 0.6271409749670619}, "location": {"f1": 0.679419525065963, "f1_ci": {"90": [0.6525572232398171, 0.7066645568922948], "95": [0.6461263147220855, 0.7104498210107556]}, "precision": 0.64375, "recall": 0.7192737430167597}, "person": {"f1": 0.83927591881514, "f1_ci": {"90": [0.8290404596313247, 0.8497318623631218], "95": [0.8264074120586163, 0.8510279929920115]}, "precision": 0.8324265505984766, "recall": 0.8462389380530974}, "product": {"f1": 0.6705945366898768, "f1_ci": {"90": [0.6480566067009147, 0.6920868989728419], "95": [0.6439099688540568, 0.6967782522764171]}, "precision": 0.6994413407821229, "recall": 0.6440329218106996}}}, "2020.test": {"micro/f1": 0.6545553145336225, "micro/f1_ci": {"90": [0.6337694636233485, 0.6740664541097675], "95": [0.6286942655715614, 0.6773336336898144]}, "micro/recall": 0.6263622210690192, "micro/precision": 0.6854060193072118, "macro/f1": 0.6121643911579755, "macro/f1_ci": {"90": [0.5886445730361866, 0.6317442192632546], "95": [0.5854534835525667, 0.6376447796836711]}, "macro/recall": 0.5898647290448411, "macro/precision": 0.6403532739362632, "per_entity_metric": {"corporation": {"f1": 0.5685279187817259, "f1_ci": {"90": [0.5082245989304813, 0.6205332894411982], "95": [0.49855067415904264, 0.6307356501580901]}, "precision": 0.5517241379310345, "recall": 0.5863874345549738}, "creative_work": {"f1": 0.5214899713467048, "f1_ci": {"90": [0.4615154306771073, 0.5762811565304089], "95": [0.4523527656187823, 0.5820755933952529]}, "precision": 0.5352941176470588, "recall": 0.5083798882681564}, "event": {"f1": 0.46680080482897385, "f1_ci": {"90": [0.4139061184152339, 0.5196369233051477], "95": [0.4056021681918053, 0.5302222222222222]}, "precision": 0.5, "recall": 0.4377358490566038}, "group": {"f1": 0.5668449197860962, "f1_ci": {"90": [0.5134957325746798, 0.6186378862301534], "95": [0.5024820823918631, 0.6271303331385156]}, "precision": 0.636, "recall": 0.5112540192926045}, "location": {"f1": 0.6510263929618768, "f1_ci": {"90": [0.5882352941176471, 0.711127694859038], "95": [0.5740167861420475, 0.7222263681592039]}, "precision": 0.6306818181818182, "recall": 0.6727272727272727}, "person": {"f1": 0.8454861111111112, "f1_ci": {"90": [0.8198943969474537, 0.8677685950413223], "95": [0.813751217094968, 0.8714086615122105]}, "precision": 0.8758992805755396, "recall": 0.8171140939597316}, "product": {"f1": 0.6649746192893401, "f1_ci": {"90": [0.6066754289322277, 0.7175162806745158], "95": [0.5919027721157766, 0.7241796440489434]}, "precision": 0.7528735632183908, "recall": 0.5954545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7888869833647745, "micro/f1_ci": {}, "micro/recall": 0.7979646120041632, "micro/precision": 0.7800135654533122, "macro/f1": 0.7888869833647745, "macro/f1_ci": {}, "macro/recall": 0.7979646120041632, "macro/precision": 0.7800135654533122}, "2020.test (span detection)": {"micro/f1": 0.7643070246813126, "micro/f1_ci": {}, "micro/recall": 0.7311883757135443, "micro/precision": 0.8005681818181818, "macro/f1": 0.7643070246813126, "macro/f1_ci": {}, "macro/recall": 0.7311883757135443, "macro/precision": 0.8005681818181818}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6545553145336225, "micro/f1_ci": {"90": [0.6337694636233485, 0.6740664541097675], "95": [0.6286942655715614, 0.6773336336898144]}, "micro/recall": 0.6263622210690192, "micro/precision": 0.6854060193072118, "macro/f1": 0.6121643911579755, "macro/f1_ci": {"90": [0.5886445730361866, 0.6317442192632546], "95": [0.5854534835525667, 0.6376447796836711]}, "macro/recall": 0.5898647290448411, "macro/precision": 0.6403532739362632, "per_entity_metric": {"corporation": {"f1": 0.5685279187817259, "f1_ci": {"90": [0.5082245989304813, 0.6205332894411982], "95": [0.49855067415904264, 0.6307356501580901]}, "precision": 0.5517241379310345, "recall": 0.5863874345549738}, "creative_work": {"f1": 0.5214899713467048, "f1_ci": {"90": [0.4615154306771073, 0.5762811565304089], "95": [0.4523527656187823, 0.5820755933952529]}, "precision": 0.5352941176470588, "recall": 0.5083798882681564}, "event": {"f1": 0.46680080482897385, "f1_ci": {"90": [0.4139061184152339, 0.5196369233051477], "95": [0.4056021681918053, 0.5302222222222222]}, "precision": 0.5, "recall": 0.4377358490566038}, "group": {"f1": 0.5668449197860962, "f1_ci": {"90": [0.5134957325746798, 0.6186378862301534], "95": [0.5024820823918631, 0.6271303331385156]}, "precision": 0.636, "recall": 0.5112540192926045}, "location": {"f1": 0.6510263929618768, "f1_ci": {"90": [0.5882352941176471, 0.711127694859038], "95": [0.5740167861420475, 0.7222263681592039]}, "precision": 0.6306818181818182, "recall": 0.6727272727272727}, "person": {"f1": 0.8454861111111112, "f1_ci": {"90": [0.8198943969474537, 0.8677685950413223], "95": [0.813751217094968, 0.8714086615122105]}, "precision": 0.8758992805755396, "recall": 0.8171140939597316}, "product": {"f1": 0.6649746192893401, "f1_ci": {"90": [0.6066754289322277, 0.7175162806745158], "95": [0.5919027721157766, 0.7241796440489434]}, "precision": 0.7528735632183908, "recall": 0.5954545454545455}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6567966159826227, "micro/f1_ci": {"90": [0.648368394653773, 0.6664006471768674], "95": [0.646545111092117, 0.6680503208004025]}, "micro/recall": 0.6643154486586494, "micro/precision": 0.6494460773230839, "macro/f1": 0.6099755599654287, "macro/f1_ci": {"90": [0.5996849808261219, 0.6196609939303647], "95": [0.5981068219009371, 0.6213388278430806]}, "macro/recall": 0.6189811354202427, "macro/precision": 0.602661693428744, "per_entity_metric": {"corporation": {"f1": 0.5087071240105541, "f1_ci": {"90": [0.48418645598643384, 0.5346670166688542], "95": [0.4789882509840839, 0.5378380150591427]}, "precision": 0.4844221105527638, "recall": 0.5355555555555556}, "creative_work": {"f1": 0.4729907773386035, "f1_ci": {"90": [0.44239598560481413, 0.5042078308369256], "95": [0.43621394580304024, 0.510041651317275]}, "precision": 0.45616264294790343, "recall": 0.4911080711354309}, "event": {"f1": 0.48405253283302063, "f1_ci": {"90": [0.45995907383110685, 0.5078510542844324], "95": [0.4572237113916049, 0.5114127149849642]}, "precision": 0.4995159728944821, "recall": 0.4695177434030937}, "group": {"f1": 0.6147885050048434, "f1_ci": {"90": [0.5942964585813152, 0.6367114602499198], "95": [0.5886815262199213, 0.6417294334888041]}, "precision": 0.6029132362254591, "recall": 0.6271409749670619}, "location": {"f1": 0.679419525065963, "f1_ci": {"90": [0.6525572232398171, 0.7066645568922948], "95": [0.6461263147220855, 0.7104498210107556]}, "precision": 0.64375, "recall": 0.7192737430167597}, "person": {"f1": 0.83927591881514, "f1_ci": {"90": [0.8290404596313247, 0.8497318623631218], "95": [0.8264074120586163, 0.8510279929920115]}, "precision": 0.8324265505984766, "recall": 0.8462389380530974}, "product": {"f1": 0.6705945366898768, "f1_ci": {"90": [0.6480566067009147, 0.6920868989728419], "95": [0.6439099688540568, 0.6967782522764171]}, "precision": 0.6994413407821229, "recall": 0.6440329218106996}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7643070246813126, "micro/f1_ci": {}, "micro/recall": 0.7311883757135443, "micro/precision": 0.8005681818181818, "macro/f1": 0.7643070246813126, "macro/f1_ci": {}, "macro/recall": 0.7311883757135443, "macro/precision": 0.8005681818181818}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7888869833647745, "micro/f1_ci": {}, "micro/recall": 0.7979646120041632, "micro/precision": 0.7800135654533122, "macro/f1": 0.7888869833647745, "macro/f1_ci": {}, "macro/recall": 0.7979646120041632, "macro/precision": 0.7800135654533122}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-2019-90m", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|