model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6587179789871326
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6727755003617073
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6452358926919519
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6107285696131857
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6215631908472189
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6039860329938679
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7843692816244613
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.8010610079575596
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7683589684283566
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6475869809203142
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.7049480757483201
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.598858329008822
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6057800656625983
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6627892226359489
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5669673771050993
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.755331088664422
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8222357971899816
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6984950700570836
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/twitter-roberta-base-2019-90m-tweetner-2020](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6587179789871326
|
94 |
+
- Precision (micro): 0.6727755003617073
|
95 |
+
- Recall (micro): 0.6452358926919519
|
96 |
+
- F1 (macro): 0.6107285696131857
|
97 |
+
- Precision (macro): 0.6215631908472189
|
98 |
+
- Recall (macro): 0.6039860329938679
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5165775401069518
|
104 |
+
- creative_work: 0.480106100795756
|
105 |
+
- event: 0.4846715328467153
|
106 |
+
- group: 0.6041666666666665
|
107 |
+
- location: 0.6836268754076973
|
108 |
+
- person: 0.8458527493010252
|
109 |
+
- product: 0.6600985221674878
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6500084574752211, 0.6675327789934176]
|
114 |
+
- 95%: [0.6480876172354417, 0.6695072839398589]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6500084574752211, 0.6675327789934176]
|
117 |
+
- 95%: [0.6480876172354417, 0.6695072839398589]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/twitter-roberta-base-2019-90m-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6450261780104712, "micro/f1_ci": {}, "micro/recall": 0.616, "micro/precision": 0.676923076923077, "macro/f1": 0.5962535580648441, "macro/f1_ci": {}, "macro/recall": 0.5745880129991789, "macro/precision": 0.6251527330747371, "per_entity_metric": {"corporation": {"f1": 0.5797101449275363, "f1_ci": {}, "precision": 0.5714285714285714, "recall": 0.5882352941176471}, "creative_work": {"f1": 0.4697986577181208, "f1_ci": {}, "precision": 0.4666666666666667, "recall": 0.47297297297297297}, "event": {"f1": 0.4067796610169492, "f1_ci": {}, "precision": 0.45714285714285713, "recall": 0.366412213740458}, "group": {"f1": 0.6305418719211824, "f1_ci": {}, "precision": 0.7150837988826816, "recall": 0.5638766519823789}, "location": {"f1": 0.5945945945945946, "f1_ci": {}, "precision": 0.5789473684210527, "recall": 0.6111111111111112}, "person": {"f1": 0.8324514991181658, "f1_ci": {}, "precision": 0.8309859154929577, "recall": 0.833922261484099}, "product": {"f1": 0.6598984771573604, "f1_ci": {}, "precision": 0.7558139534883721, "recall": 0.5855855855855856}}}, "2021.test": {"micro/f1": 0.6587179789871326, "micro/f1_ci": {"90": [0.6500084574752211, 0.6675327789934176], "95": [0.6480876172354417, 0.6695072839398589]}, "micro/recall": 0.6452358926919519, "micro/precision": 0.6727755003617073, "macro/f1": 0.6107285696131857, "macro/f1_ci": {"90": [0.6016803308717976, 0.6202645433833436], "95": [0.5994476476393031, 0.6216597508490829]}, "macro/recall": 0.6039860329938679, "macro/precision": 0.6215631908472189, "per_entity_metric": {"corporation": {"f1": 0.5165775401069518, "f1_ci": {"90": [0.49149727683928734, 0.5424631455686919], "95": [0.4852586317545886, 0.5461513660625363]}, "precision": 0.4979381443298969, "recall": 0.5366666666666666}, "creative_work": {"f1": 0.480106100795756, "f1_ci": {"90": [0.453073041723214, 0.50950812525732], "95": [0.4466713194941541, 0.5161499273646297]}, "precision": 0.46589446589446587, "recall": 0.4952120383036936}, "event": {"f1": 0.4846715328467153, "f1_ci": {"90": [0.461685794044665, 0.5075673834488479], "95": [0.45719391471483367, 0.5126992651593725]}, "precision": 0.5209205020920502, "recall": 0.4531392174704277}, "group": {"f1": 0.6041666666666665, "f1_ci": {"90": [0.5830811998193606, 0.6264368818381182], "95": [0.5783034453510499, 0.6304740494329455]}, "precision": 0.6642969984202212, "recall": 0.5540184453227931}, "location": {"f1": 0.6836268754076973, "f1_ci": {"90": [0.6571241349182627, 0.709613327872738], "95": [0.6521909682357443, 0.7150913388648733]}, "precision": 0.6413708690330477, "recall": 0.7318435754189944}, "person": {"f1": 0.8458527493010252, "f1_ci": {"90": [0.8342425995098203, 0.8575205549845837], "95": [0.8314334208846303, 0.8595415243945875]}, "precision": 0.8552581982661138, "recall": 0.8366519174041298}, "product": {"f1": 0.6600985221674878, "f1_ci": {"90": [0.6375820368237944, 0.681656240341884], "95": [0.6340597504399297, 0.684351750913229]}, "precision": 0.7052631578947368, "recall": 0.6203703703703703}}}, "2020.test": {"micro/f1": 0.6475869809203142, "micro/f1_ci": {"90": [0.6267897474300171, 0.6668509760382569], "95": [0.6220217753635754, 0.6707876882456454]}, "micro/recall": 0.598858329008822, "micro/precision": 0.7049480757483201, "macro/f1": 0.6057800656625983, "macro/f1_ci": {"90": [0.5831278101058672, 0.6263507944303333], "95": [0.5785552590152583, 0.6306934757086151]}, "macro/recall": 0.5669673771050993, "macro/precision": 0.6627892226359489, "per_entity_metric": {"corporation": {"f1": 0.5618556701030927, "f1_ci": {"90": [0.49852350088248815, 0.6193234013361967], "95": [0.4861052259887006, 0.6320740777090763]}, "precision": 0.5532994923857868, "recall": 0.5706806282722513}, "creative_work": {"f1": 0.5497076023391813, "f1_ci": {"90": [0.4895030501413481, 0.6027666741522567], "95": [0.47588721221519736, 0.6109806635085506]}, "precision": 0.5766871165644172, "recall": 0.5251396648044693}, "event": {"f1": 0.4467213114754099, "f1_ci": {"90": [0.3950591617258284, 0.49787323817218776], "95": [0.3825687077007499, 0.5054575163398694]}, "precision": 0.48878923766816146, "recall": 0.41132075471698115}, "group": {"f1": 0.5316973415132924, "f1_ci": {"90": [0.4749270706399321, 0.5884958258795467], "95": [0.46389314030764484, 0.6000093808630396]}, "precision": 0.7303370786516854, "recall": 0.4180064308681672}, "location": {"f1": 0.6352941176470588, "f1_ci": {"90": [0.5737047095912183, 0.689875593176863], "95": [0.5627423945917096, 0.703535282044023]}, "precision": 0.6171428571428571, "recall": 0.6545454545454545}, "person": {"f1": 0.8364279398762157, "f1_ci": {"90": [0.8095100467932836, 0.8597686174777278], "95": [0.8044955935879107, 0.8631130405741233]}, "precision": 0.8841121495327103, "recall": 0.7936241610738255}, "product": {"f1": 0.6787564766839379, "f1_ci": {"90": [0.6229499055113231, 0.7319359334823253], "95": [0.6136336187966622, 0.739809307700981]}, "precision": 0.7891566265060241, "recall": 0.5954545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7843692816244613, "micro/f1_ci": {}, "micro/recall": 0.7683589684283566, "micro/precision": 0.8010610079575596, "macro/f1": 0.7843692816244613, "macro/f1_ci": {}, "macro/recall": 0.7683589684283566, "macro/precision": 0.8010610079575596}, "2020.test (span detection)": {"micro/f1": 0.755331088664422, "micro/f1_ci": {}, "micro/recall": 0.6984950700570836, "micro/precision": 0.8222357971899816, "macro/f1": 0.755331088664422, "macro/f1_ci": {}, "macro/recall": 0.6984950700570836, "macro/precision": 0.8222357971899816}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6475869809203142, "micro/f1_ci": {"90": [0.6267897474300171, 0.6668509760382569], "95": [0.6220217753635754, 0.6707876882456454]}, "micro/recall": 0.598858329008822, "micro/precision": 0.7049480757483201, "macro/f1": 0.6057800656625983, "macro/f1_ci": {"90": [0.5831278101058672, 0.6263507944303333], "95": [0.5785552590152583, 0.6306934757086151]}, "macro/recall": 0.5669673771050993, "macro/precision": 0.6627892226359489, "per_entity_metric": {"corporation": {"f1": 0.5618556701030927, "f1_ci": {"90": [0.49852350088248815, 0.6193234013361967], "95": [0.4861052259887006, 0.6320740777090763]}, "precision": 0.5532994923857868, "recall": 0.5706806282722513}, "creative_work": {"f1": 0.5497076023391813, "f1_ci": {"90": [0.4895030501413481, 0.6027666741522567], "95": [0.47588721221519736, 0.6109806635085506]}, "precision": 0.5766871165644172, "recall": 0.5251396648044693}, "event": {"f1": 0.4467213114754099, "f1_ci": {"90": [0.3950591617258284, 0.49787323817218776], "95": [0.3825687077007499, 0.5054575163398694]}, "precision": 0.48878923766816146, "recall": 0.41132075471698115}, "group": {"f1": 0.5316973415132924, "f1_ci": {"90": [0.4749270706399321, 0.5884958258795467], "95": [0.46389314030764484, 0.6000093808630396]}, "precision": 0.7303370786516854, "recall": 0.4180064308681672}, "location": {"f1": 0.6352941176470588, "f1_ci": {"90": [0.5737047095912183, 0.689875593176863], "95": [0.5627423945917096, 0.703535282044023]}, "precision": 0.6171428571428571, "recall": 0.6545454545454545}, "person": {"f1": 0.8364279398762157, "f1_ci": {"90": [0.8095100467932836, 0.8597686174777278], "95": [0.8044955935879107, 0.8631130405741233]}, "precision": 0.8841121495327103, "recall": 0.7936241610738255}, "product": {"f1": 0.6787564766839379, "f1_ci": {"90": [0.6229499055113231, 0.7319359334823253], "95": [0.6136336187966622, 0.739809307700981]}, "precision": 0.7891566265060241, "recall": 0.5954545454545455}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6587179789871326, "micro/f1_ci": {"90": [0.6500084574752211, 0.6675327789934176], "95": [0.6480876172354417, 0.6695072839398589]}, "micro/recall": 0.6452358926919519, "micro/precision": 0.6727755003617073, "macro/f1": 0.6107285696131857, "macro/f1_ci": {"90": [0.6016803308717976, 0.6202645433833436], "95": [0.5994476476393031, 0.6216597508490829]}, "macro/recall": 0.6039860329938679, "macro/precision": 0.6215631908472189, "per_entity_metric": {"corporation": {"f1": 0.5165775401069518, "f1_ci": {"90": [0.49149727683928734, 0.5424631455686919], "95": [0.4852586317545886, 0.5461513660625363]}, "precision": 0.4979381443298969, "recall": 0.5366666666666666}, "creative_work": {"f1": 0.480106100795756, "f1_ci": {"90": [0.453073041723214, 0.50950812525732], "95": [0.4466713194941541, 0.5161499273646297]}, "precision": 0.46589446589446587, "recall": 0.4952120383036936}, "event": {"f1": 0.4846715328467153, "f1_ci": {"90": [0.461685794044665, 0.5075673834488479], "95": [0.45719391471483367, 0.5126992651593725]}, "precision": 0.5209205020920502, "recall": 0.4531392174704277}, "group": {"f1": 0.6041666666666665, "f1_ci": {"90": [0.5830811998193606, 0.6264368818381182], "95": [0.5783034453510499, 0.6304740494329455]}, "precision": 0.6642969984202212, "recall": 0.5540184453227931}, "location": {"f1": 0.6836268754076973, "f1_ci": {"90": [0.6571241349182627, 0.709613327872738], "95": [0.6521909682357443, 0.7150913388648733]}, "precision": 0.6413708690330477, "recall": 0.7318435754189944}, "person": {"f1": 0.8458527493010252, "f1_ci": {"90": [0.8342425995098203, 0.8575205549845837], "95": [0.8314334208846303, 0.8595415243945875]}, "precision": 0.8552581982661138, "recall": 0.8366519174041298}, "product": {"f1": 0.6600985221674878, "f1_ci": {"90": [0.6375820368237944, 0.681656240341884], "95": [0.6340597504399297, 0.684351750913229]}, "precision": 0.7052631578947368, "recall": 0.6203703703703703}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.755331088664422, "micro/f1_ci": {}, "micro/recall": 0.6984950700570836, "micro/precision": 0.8222357971899816, "macro/f1": 0.755331088664422, "macro/f1_ci": {}, "macro/recall": 0.6984950700570836, "macro/precision": 0.8222357971899816}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7843692816244613, "micro/f1_ci": {}, "micro/recall": 0.7683589684283566, "micro/precision": 0.8010610079575596, "macro/f1": 0.7843692816244613, "macro/f1_ci": {}, "macro/recall": 0.7683589684283566, "macro/precision": 0.8010610079575596}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/twitter-roberta-base-2019-90m-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|