Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`cardiffnlp/twitter-roberta-base-dec2021`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!
@@ -5,76 +5,77 @@ metrics:
|
|
5 |
- f1
|
6 |
- precision
|
7 |
- recall
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: tner/twitter-roberta-base-dec2021-tweetner7-random
|
10 |
results:
|
11 |
- task:
|
12 |
-
name: Token Classification
|
13 |
type: token-classification
|
|
|
14 |
dataset:
|
15 |
name: tner/tweetner7
|
16 |
type: tner/tweetner7
|
17 |
args: tner/tweetner7
|
18 |
metrics:
|
19 |
-
-
|
20 |
-
type: f1
|
21 |
value: 0.6321284238886395
|
22 |
-
|
23 |
-
|
24 |
value: 0.6142015706806283
|
25 |
-
|
26 |
-
|
27 |
value: 0.6511332099907493
|
28 |
-
|
29 |
-
|
30 |
value: 0.583682304736069
|
31 |
-
|
32 |
-
|
33 |
value: 0.5654677691354458
|
34 |
-
|
35 |
-
|
36 |
value: 0.6047150410746663
|
37 |
-
|
38 |
-
|
39 |
value: 0.7703620544484986
|
40 |
-
|
41 |
-
|
42 |
value: 0.7484729493891797
|
43 |
-
|
44 |
-
|
45 |
value: 0.7935700242858795
|
46 |
-
|
47 |
-
|
48 |
value: 0.6368775235531628
|
49 |
-
|
50 |
-
|
51 |
value: 0.6616331096196868
|
52 |
-
|
53 |
-
|
54 |
value: 0.6139076284379865
|
55 |
-
|
56 |
-
|
57 |
value: 0.5976605759407211
|
58 |
-
|
59 |
-
|
60 |
value: 0.6177069721428509
|
61 |
-
|
62 |
-
|
63 |
value: 0.5812570646484104
|
64 |
-
|
65 |
-
|
66 |
value: 0.7542395693135936
|
67 |
-
|
68 |
-
|
69 |
value: 0.7835570469798657
|
70 |
-
|
71 |
-
|
72 |
value: 0.7270368448365335
|
73 |
-
|
74 |
-
pipeline_tag: token-classification
|
75 |
-
widget:
|
76 |
-
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}"
|
77 |
-
example_title: "NER Example 1"
|
78 |
---
|
79 |
# tner/twitter-roberta-base-dec2021-tweetner7-random
|
80 |
|
|
|
5 |
- f1
|
6 |
- precision
|
7 |
- recall
|
8 |
+
pipeline_tag: token-classification
|
9 |
+
widget:
|
10 |
+
- text: 'Get the all-analog Classic Vinyl Edition of `Takin'' Off` Album from {@herbiehancock@}
|
11 |
+
via {@bluenoterecords@} link below: {{URL}}'
|
12 |
+
example_title: NER Example 1
|
13 |
+
base_model: cardiffnlp/twitter-roberta-base-dec2021
|
14 |
model-index:
|
15 |
- name: tner/twitter-roberta-base-dec2021-tweetner7-random
|
16 |
results:
|
17 |
- task:
|
|
|
18 |
type: token-classification
|
19 |
+
name: Token Classification
|
20 |
dataset:
|
21 |
name: tner/tweetner7
|
22 |
type: tner/tweetner7
|
23 |
args: tner/tweetner7
|
24 |
metrics:
|
25 |
+
- type: f1
|
|
|
26 |
value: 0.6321284238886395
|
27 |
+
name: F1 (test_2021)
|
28 |
+
- type: precision
|
29 |
value: 0.6142015706806283
|
30 |
+
name: Precision (test_2021)
|
31 |
+
- type: recall
|
32 |
value: 0.6511332099907493
|
33 |
+
name: Recall (test_2021)
|
34 |
+
- type: f1_macro
|
35 |
value: 0.583682304736069
|
36 |
+
name: Macro F1 (test_2021)
|
37 |
+
- type: precision_macro
|
38 |
value: 0.5654677691354458
|
39 |
+
name: Macro Precision (test_2021)
|
40 |
+
- type: recall_macro
|
41 |
value: 0.6047150410746663
|
42 |
+
name: Macro Recall (test_2021)
|
43 |
+
- type: f1_entity_span
|
44 |
value: 0.7703620544484986
|
45 |
+
name: Entity Span F1 (test_2021)
|
46 |
+
- type: precision_entity_span
|
47 |
value: 0.7484729493891797
|
48 |
+
name: Entity Span Precision (test_2020)
|
49 |
+
- type: recall_entity_span
|
50 |
value: 0.7935700242858795
|
51 |
+
name: Entity Span Recall (test_2021)
|
52 |
+
- type: f1
|
53 |
value: 0.6368775235531628
|
54 |
+
name: F1 (test_2020)
|
55 |
+
- type: precision
|
56 |
value: 0.6616331096196868
|
57 |
+
name: Precision (test_2020)
|
58 |
+
- type: recall
|
59 |
value: 0.6139076284379865
|
60 |
+
name: Recall (test_2020)
|
61 |
+
- type: f1_macro
|
62 |
value: 0.5976605759407211
|
63 |
+
name: Macro F1 (test_2020)
|
64 |
+
- type: precision_macro
|
65 |
value: 0.6177069721428509
|
66 |
+
name: Macro Precision (test_2020)
|
67 |
+
- type: recall_macro
|
68 |
value: 0.5812570646484104
|
69 |
+
name: Macro Recall (test_2020)
|
70 |
+
- type: f1_entity_span
|
71 |
value: 0.7542395693135936
|
72 |
+
name: Entity Span F1 (test_2020)
|
73 |
+
- type: precision_entity_span
|
74 |
value: 0.7835570469798657
|
75 |
+
name: Entity Span Precision (test_2020)
|
76 |
+
- type: recall_entity_span
|
77 |
value: 0.7270368448365335
|
78 |
+
name: Entity Span Recall (test_2020)
|
|
|
|
|
|
|
|
|
79 |
---
|
80 |
# tner/twitter-roberta-base-dec2021-tweetner7-random
|
81 |
|