yuchenglu commited on
Commit
98dd319
·
1 Parent(s): 7799ac0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -7
README.md CHANGED
@@ -11,23 +11,51 @@ datasets:
11
 
12
  ## Model Description
13
 
14
- LLaMA-2-7B-32K-Chat is an open-source, long-context chat model finetuned from [Llama-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) over high-quality instructions and chat data.
15
- We build Llama-2-7B-32K-Chat with less than 200 lines of Python script using Together API, and we also make the recipe fully available.
16
- We hope that this can enable everyone to finetune their own version of [Llama-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) — play with Together API and give us feedback!
17
 
18
- ## What's new?
 
19
 
 
20
 
21
- ## Model Architecture
 
22
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- ## Training and Fine-tuning
25
 
 
 
26
 
 
 
27
 
28
- ## Inference
 
 
 
 
 
 
 
29
 
 
30
 
 
 
 
31
 
32
  ## Limitations and Bias
33
 
 
11
 
12
  ## Model Description
13
 
14
+ LLaMA-2-7B-32K-Chat is an open-source, long-context chat model finetuned from [Llama-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K), over high-quality instructions and chat data.
15
+ We build Llama-2-7B-32K-Chat with less than 200 lines of Python script using [Together API](https://together.ai/blog/api-announcement), and we also make the recipe fully available.
16
+ We hope that this can enable everyone to finetune their own version of [Llama-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) — play with [Together API](https://together.ai/blog/api-announcement) and give us feedback!
17
 
18
+ Llama-2-7B-32K-Chat is fine-tuned over 19K single- and multi-round conversations generated by human instructions and Llama-2-70B-Chat outputs,
19
+ The dataset is also released [here](https://huggingface.co/datasets/togethercomputer/llama-instruct).
20
 
21
+ ## Inference
22
 
23
+ You can use the [Together API](https://together.ai/blog/api-announcement) to try out LLaMA-2-7B-32K-Chat for inference.
24
+ The updated inference stack allows for efficient inference.
25
 
26
+ To run the model locally, we strongly recommend to install Flash Attention V2, which is necessary to obtain the best performance:
27
+ ```
28
+ # Please update the path of `CUDA_HOME`
29
+ export CUDA_HOME=/usr/local/cuda-11.8
30
+ pip install transformers==4.31.0
31
+ pip install sentencepiece
32
+ pip install ninja
33
+ pip install flash-attn --no-build-isolation
34
+ pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary
35
+ ```
36
 
37
+ You can use this model directly from the Hugging Face Model Hub or fine-tune it on your own data using the OpenChatKit.
38
 
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM
41
 
42
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K")
43
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", trust_remote_code=True, torch_dtype=torch.float16)
44
 
45
+ input_context = "Your text here"
46
+ input_ids = tokenizer.encode(input_context, return_tensors="pt")
47
+ output = model.generate(input_ids, max_length=128, temperature=0.7)
48
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
49
+ print(output_text)
50
+ ```
51
+
52
+ Alternatively, you can set `trust_remote_code=False` if you prefer not to use flash attention.
53
 
54
+ To chat with the model, the prompt is in the format of
55
 
56
+ ```
57
+ [INST] Write a song about elepants [\INST]
58
+ ```
59
 
60
  ## Limitations and Bias
61