|
|
|
|
|
import math |
|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import init |
|
|
|
|
|
class StructuredLinear(nn.Module): |
|
|
|
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None): |
|
"""Subclasses should call reset_parameters |
|
""" |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
|
|
if not hasattr(self, 'in_features_extended'): |
|
self.in_features_extended = in_features |
|
if not hasattr(self, 'out_features_extended'): |
|
self.out_features_extended = out_features |
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_features, **factory_kwargs)) |
|
else: |
|
self.register_parameter('bias', None) |
|
|
|
def reset_parameters(self) -> None: |
|
self.set_weights_from_dense_init(dense_init_fn_=partial(init.kaiming_uniform_, a=math.sqrt(5))) |
|
self.reset_parameters_bias() |
|
|
|
def set_weights_from_dense_init(self, dense_init_fn_): |
|
raise NotImplementedError |
|
|
|
def reset_parameters_bias(self): |
|
if self.bias is not None: |
|
fan_in = self.bias.shape[-1] |
|
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 |
|
init.uniform_(self.bias, -bound, bound) |
|
|
|
@property |
|
def saving(self): |
|
raise NotImplementedError |
|
|
|
def convert_to_dense_weight(self): |
|
factory_kwargs = {'device': self.weight.device, 'dtype': self.weight.dtype} |
|
dense_weight = self.forward_matmul(torch.eye(self.in_features, **factory_kwargs)).T |
|
return dense_weight |
|
|
|
def preprocess(self, x): |
|
in_features = x.shape[-1] |
|
if in_features < self.in_features_extended: |
|
x = F.pad(x, (0, self.in_features_extended - in_features)) |
|
return x |
|
|
|
def postprocess(self, output): |
|
out_features_extended = output.shape[-1] |
|
if out_features_extended > self.out_features: |
|
output = output[..., :self.out_features] |
|
return output |
|
|
|
def forward_matmul(self, x): |
|
raise NotImplementedError |
|
|
|
def forward(self, x): |
|
output = self.forward_matmul(x) |
|
|
|
return (output + self.bias.to(dtype=output.dtype)) if self.bias is not None else output |