--- license: apache-2.0 language: - en pipeline_tag: text-classification inference: false --- # Monarch Mixer-BERT An 80M checkpoint of M2-BERT, pretrained with sequence length 2048, and it has been fine-tuned for long-context retrieval. Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence. This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora. Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it! ## How to use You can load this model using Hugging Face `AutoModel`: ```python from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained( "togethercomputer/m2-bert-80M-2k-retrieval", trust_remote_code=True ) ``` You should expect to see a large error message about unused parameters for FlashFFTConv. If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main). This model generates embeddings for retrieval. The embeddings have a dimensionality of 768: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification max_seq_length = 2048 testing_string = "Every morning, I make a cup of coffee to start my day." model = AutoModelForSequenceClassification.from_pretrained( "togethercomputer/m2-bert-80M-2k-retrieval", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( "bert-base-uncased", model_max_length=max_seq_length ) input_ids = tokenizer( [testing_string], return_tensors="pt", padding="max_length", return_token_type_ids=False, truncation=True, max_length=max_seq_length ) outputs = model(**input_ids) embeddings = outputs['sentence_embedding'] ``` You can also get embeddings from this model using the Together API as follows (you can find your API key [here](https://api.together.xyz/settings/api-keys)): ```python import os import requests def generate_together_embeddings(text: str, model_api_string: str, api_key: str): url = "https://api.together.xyz/api/v1/embeddings" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {api_key}" } session = requests.Session() response = session.post( url, headers=headers, json={ "input": text, "model": model_api_string } ) if response.status_code != 200: raise ValueError(f"Request failed with status code {response.status_code}: {response.text}") return response.json()['data'][0]['embedding'] print(generate_together_embeddings( 'Hello world', 'togethercomputer/m2-bert-80M-2k-retrieval', os.environ['TOGETHER_API_KEY'])[:10] ) ``` ## Citation If you use this model, or otherwise found our work valuable, you can cite us as follows: ``` @inproceedings{fu2023monarch, title={Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture}, author={Fu, Daniel Y and Arora, Simran and Grogan, Jessica and Johnson, Isys and Eyuboglu, Sabri and Thomas, Armin W and Spector, Benjamin and Poli, Michael and Rudra, Atri and R{\'e}, Christopher}, booktitle={Advances in Neural Information Processing Systems}, year={2023} } ```