Taishi-N324 commited on
Commit
2de7372
1 Parent(s): 036f4c4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +196 -0
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ja
5
+ library_name: transformers
6
+ pipeline_tag: text-generation
7
+ license: llama3.1
8
+ model_type: llama
9
+ ---
10
+
11
+ # Llama3.1 Swallow
12
+
13
+ Our Swallow model has undergone continual pre-training from the [Llama 3.1 family](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f), primarily with the addition of Japanese language data. The Instruct versions use supervised fine-tuning (SFT). Links to other models can be found in the index.
14
+
15
+
16
+ # Model Release Updates
17
+
18
+ We are excited to share the release schedule for our latest models:
19
+ - **October 08, 2024**: Released the [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1).
20
+
21
+ ## Swallow Model Index
22
+
23
+ |Model|Llama-3.1-Swallow|Llama-3.1-Swallow-Instruct|
24
+ |---|---|---|
25
+ |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) |
26
+ |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) |
27
+
28
+ ![logo](./logo.png)
29
+
30
+ This repository provides large language models developed by [Swallow-LLM](https://swallow-llm.github.io/).
31
+
32
+ ## Model Details
33
+
34
+ * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
35
+ * **Language(s)**: Japanese English
36
+ * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
37
+ * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer.
38
+ * **Contact**: swallow[at]nlp.c.titech.ac.jp
39
+
40
+ ## Model Performance
41
+
42
+ ### Japanese tasks
43
+
44
+ |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
45
+ |---|---|---|---|---|---|---|---|---|---|---|---|
46
+ | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| |
47
+ | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| |
48
+ | Qwen2-72B | 0.9607 | 0.6399 | 0.5617 | 0.9261 | 0.2362 | 0.7560 | 0.2747 | 0.2419 | 0.7831 | 0.5567 | 0.5937 |
49
+ | Qwen2.5-72B | **0.9723** | 0.6111 | 0.6194 | **0.9301** | **0.2792** | **0.8280** | 0.2869 | 0.2521 | **0.8046** | **0.6482** | **0.6232** |
50
+ | Sarashina2-70B | 0.9285 | **0.7173** | **0.6681** | 0.9294 | 0.1899 | 0.4880 | 0.3129 | 0.2429 | 0.5916 | 0.2384 | 0.5307 |
51
+ | Llama 3 70B | 0.9473 | 0.6042 | 0.5965 | 0.9207 | 0.2254 | 0.6720 | 0.2855 | 0.2526 | 0.6975 | 0.4799 | 0.5682 |
52
+ | Llama 3.1 70B | 0.9482 | 0.6112 | 0.5968 | 0.9251 | 0.2284 | 0.6840 | 0.2870 | 0.2553 | 0.6690 | 0.4573 | 0.5662 |
53
+ | Llama 3 Youko 70B | 0.9455 | 0.6088 | 0.6068 | 0.9226 | 0.2428 | 0.6680 | 0.2909 | 0.2495 | 0.7038 | 0.4530 | 0.5692 |
54
+ | Llama 3 Swallow 70B | 0.9714 | 0.6695 | 0.6881 | 0.9218 | 0.2404 | 0.7080 | 0.3072 | 0.2548 | 0.7049 | 0.4683 | 0.5934 |
55
+ | Llama 3.1 Swallow 70B | 0.9553 | 0.6450 | 0.6776 | 0.9231 | 0.2722 | 0.6840 | **0.3199** | **0.2591** | 0.7088 | 0.4872 | 0.5932 |
56
+
57
+ ### English tasks
58
+
59
+ |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg|
60
+ |---|---|---|---|---|---|---|---|---|---|---|
61
+ | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| |
62
+ | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| |
63
+ | Qwen2-72B | 0.4160 | **0.7890** | 0.6766 | **0.4052** | 0.9161 | 0.8428 | **0.8908** | 0.6388 | **0.6049** | **0.6867** |
64
+ | Qwen2.5-72B | 0.4160 | 0.7604 | **0.6849** | 0.3997 | 0.9015 | **0.8608** | 0.8726 | **0.7268** | 0.5543 | 0.6863 |
65
+ | Sarashina2-70B | 0.3920 | 0.5373 | 0.6270 | 0.4174 | **0.9178** | 0.6303 | 0.0106 | 0.6386 | 0.2799 | 0.4945 |
66
+ | Llama 3 70B | 0.4360 | 0.8263 | 0.6909 | 0.4071 | 0.9213 | 0.7870 | 0.8014 | 0.8266 | 0.5177 | 0.6905 |
67
+ | Llama 3.1 70B | **0.4420** | 0.8288 | 0.6898 | 0.4050 | 0.9196 | 0.7846 | 0.7991 | 0.6566 | 0.5476 | 0.6748 |
68
+ | Llama 3 Youko 70B | 0.4300 | 0.8291 | 0.6900 | 0.4057 | 0.9222 | 0.7862 | 0.7968 | 0.8275 | 0.4128 | 0.6778 |
69
+ | Llama 3 Swallow 70B | 0.4240 | 0.8231 | 0.6828 | 0.4059 | 0.9234 | 0.7745 | 0.8143 | 0.7352 | 0.4909 | 0.6749 |
70
+ | Llama 3.1 Swallow 70B | 0.4320 | 0.8262 | 0.6898 | 0.4018 | 0.9277 | 0.7724 | 0.8089 | 0.8063 | 0.5396 | 0.6894 |
71
+
72
+ ## Evaluation Benchmarks
73
+
74
+ ### Japanese evaluation benchmarks
75
+
76
+ We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
77
+
78
+ - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
79
+ - Open-ended question answering (JEMHopQA [Ishii et al., 2024])
80
+ - Open-ended question answering (NIILC [関根, 2003])
81
+ - Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
82
+ - Automatic summarization (XL-Sum [Hasan et al., 2021])
83
+ - Machine translation (WMT2020 ja-en [Barrault et al., 2020])
84
+ - Machine translation (WMT2020 en-ja [Barrault et al., 2020])
85
+ - Mathematical reasoning (MGSM [Shi et al., 2023])
86
+ - Academic exams (JMMLU [尹ら, 2024])
87
+ - Code generation (JHumanEval [佐藤ら, 2024])
88
+
89
+ ### English evaluation benchmarks
90
+
91
+ We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
92
+
93
+ - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
94
+ - Open-ended question answering (TriviaQA [Joshi et al., 2017])
95
+ - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
96
+ - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
97
+ - Natural language inference (HellaSwag [Zellers et al., 2019])
98
+ - Mathematical reasoning (GSM8K [Cobbe et al., 2021])
99
+ - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
100
+ - Academic exams (MMLU [Hendrycks et al., 2021])
101
+ - Code generation (HumanEval [Chen et al., 2021])
102
+
103
+ ## Training Datasets
104
+
105
+ ### Continual Pre-Training
106
+ The following datasets were used for continual pre-training.
107
+
108
+ - [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
109
+ - [Dclm-baseline-1.0](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0)
110
+ - [English Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
111
+ - [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
112
+ - [Laboro ParaCorpus](https://github.com/laboroai/Laboro-ParaCorpus)
113
+ - [Swallow Corpus](https://arxiv.org/abs/2404.17733)
114
+ - [The-stack-v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids)
115
+
116
+ ## Risks and Limitations
117
+
118
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
119
+
120
+ ## Acknowledgements
121
+
122
+ We thank Meta Research for releasing Llama 3.1 under an open license for others to build on.
123
+
124
+ Our project is supported by the [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
125
+
126
+ ## License
127
+
128
+ [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)
129
+
130
+ ## Authors
131
+
132
+ Here are the team members:
133
+ - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
134
+ - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
135
+ - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
136
+ - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
137
+ - [Koki Maeda](https://sites.google.com/view/silviase)
138
+ - [Kakeru Hattori](https://aya-se.vercel.app/)
139
+ - [Masanari Ohi](https://sites.google.com/view/masanariohi)
140
+ - [Taihei Shiotani](https://github.com/inatoihs)
141
+ - [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
142
+ - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
143
+ - [Rio Yokota](https://twitter.com/rioyokota)
144
+ - [Kazuki Fujii](https://twitter.com/okoge_kaz)
145
+ - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
146
+ - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
147
+ - [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
148
+ - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
149
+ - [Hiroya Takamura](https://sites.google.com/view/hjtakamura)
150
+
151
+ ## How to cite
152
+
153
+ If you find our work helpful, please feel free to cite us.
154
+
155
+ ```
156
+ @inproceedings{Fujii:COLM2024,
157
+ title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
158
+ Enhancing Japanese Language Capabilities},
159
+ author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
160
+ Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
161
+ Mizuki and Rio Yokota and Naoaki Okazaki},
162
+ booktitle="Proceedings of the First Conference on Language Modeling",
163
+ series={COLM},
164
+ pages="(to appear)",
165
+ year="2024",
166
+ month=oct,
167
+ address={University of Pennsylvania, USA},
168
+ }
169
+
170
+ @inproceedings{Okazaki:COLM2024,
171
+ title={Building a Large Japanese Web Corpus for Large Language Models},
172
+ author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
173
+ Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
174
+ Loem and Rio Yokota and Sakae Mizuki},
175
+ booktitle="Proceedings of the First Conference on Language Modeling",
176
+ series={COLM},
177
+ pages="(to appear)",
178
+ year="2024",
179
+ month=oct,
180
+ address={University of Pennsylvania, USA},
181
+ }
182
+ ```
183
+
184
+ ### Citations
185
+
186
+ ```tex
187
+ @misc{dubey2024llama3herdmodels,
188
+ title={The Llama 3 Herd of Models},
189
+ author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.},
190
+ year={2024},
191
+ eprint={2407.21783},
192
+ archivePrefix={arXiv},
193
+ primaryClass={cs.AI},
194
+ url={https://arxiv.org/abs/2407.21783},
195
+ }
196
+ ```