Taishi-N324
commited on
Commit
•
2de7372
1
Parent(s):
036f4c4
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ja
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
license: llama3.1
|
8 |
+
model_type: llama
|
9 |
+
---
|
10 |
+
|
11 |
+
# Llama3.1 Swallow
|
12 |
+
|
13 |
+
Our Swallow model has undergone continual pre-training from the [Llama 3.1 family](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f), primarily with the addition of Japanese language data. The Instruct versions use supervised fine-tuning (SFT). Links to other models can be found in the index.
|
14 |
+
|
15 |
+
|
16 |
+
# Model Release Updates
|
17 |
+
|
18 |
+
We are excited to share the release schedule for our latest models:
|
19 |
+
- **October 08, 2024**: Released the [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1).
|
20 |
+
|
21 |
+
## Swallow Model Index
|
22 |
+
|
23 |
+
|Model|Llama-3.1-Swallow|Llama-3.1-Swallow-Instruct|
|
24 |
+
|---|---|---|
|
25 |
+
|8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) |
|
26 |
+
|70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) |
|
27 |
+
|
28 |
+
![logo](./logo.png)
|
29 |
+
|
30 |
+
This repository provides large language models developed by [Swallow-LLM](https://swallow-llm.github.io/).
|
31 |
+
|
32 |
+
## Model Details
|
33 |
+
|
34 |
+
* **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
|
35 |
+
* **Language(s)**: Japanese English
|
36 |
+
* **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
|
37 |
+
* **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer.
|
38 |
+
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
39 |
+
|
40 |
+
## Model Performance
|
41 |
+
|
42 |
+
### Japanese tasks
|
43 |
+
|
44 |
+
|Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
|
45 |
+
|---|---|---|---|---|---|---|---|---|---|---|---|
|
46 |
+
| |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| |
|
47 |
+
| |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| |
|
48 |
+
| Qwen2-72B | 0.9607 | 0.6399 | 0.5617 | 0.9261 | 0.2362 | 0.7560 | 0.2747 | 0.2419 | 0.7831 | 0.5567 | 0.5937 |
|
49 |
+
| Qwen2.5-72B | **0.9723** | 0.6111 | 0.6194 | **0.9301** | **0.2792** | **0.8280** | 0.2869 | 0.2521 | **0.8046** | **0.6482** | **0.6232** |
|
50 |
+
| Sarashina2-70B | 0.9285 | **0.7173** | **0.6681** | 0.9294 | 0.1899 | 0.4880 | 0.3129 | 0.2429 | 0.5916 | 0.2384 | 0.5307 |
|
51 |
+
| Llama 3 70B | 0.9473 | 0.6042 | 0.5965 | 0.9207 | 0.2254 | 0.6720 | 0.2855 | 0.2526 | 0.6975 | 0.4799 | 0.5682 |
|
52 |
+
| Llama 3.1 70B | 0.9482 | 0.6112 | 0.5968 | 0.9251 | 0.2284 | 0.6840 | 0.2870 | 0.2553 | 0.6690 | 0.4573 | 0.5662 |
|
53 |
+
| Llama 3 Youko 70B | 0.9455 | 0.6088 | 0.6068 | 0.9226 | 0.2428 | 0.6680 | 0.2909 | 0.2495 | 0.7038 | 0.4530 | 0.5692 |
|
54 |
+
| Llama 3 Swallow 70B | 0.9714 | 0.6695 | 0.6881 | 0.9218 | 0.2404 | 0.7080 | 0.3072 | 0.2548 | 0.7049 | 0.4683 | 0.5934 |
|
55 |
+
| Llama 3.1 Swallow 70B | 0.9553 | 0.6450 | 0.6776 | 0.9231 | 0.2722 | 0.6840 | **0.3199** | **0.2591** | 0.7088 | 0.4872 | 0.5932 |
|
56 |
+
|
57 |
+
### English tasks
|
58 |
+
|
59 |
+
|Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg|
|
60 |
+
|---|---|---|---|---|---|---|---|---|---|---|
|
61 |
+
| |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| |
|
62 |
+
| |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| |
|
63 |
+
| Qwen2-72B | 0.4160 | **0.7890** | 0.6766 | **0.4052** | 0.9161 | 0.8428 | **0.8908** | 0.6388 | **0.6049** | **0.6867** |
|
64 |
+
| Qwen2.5-72B | 0.4160 | 0.7604 | **0.6849** | 0.3997 | 0.9015 | **0.8608** | 0.8726 | **0.7268** | 0.5543 | 0.6863 |
|
65 |
+
| Sarashina2-70B | 0.3920 | 0.5373 | 0.6270 | 0.4174 | **0.9178** | 0.6303 | 0.0106 | 0.6386 | 0.2799 | 0.4945 |
|
66 |
+
| Llama 3 70B | 0.4360 | 0.8263 | 0.6909 | 0.4071 | 0.9213 | 0.7870 | 0.8014 | 0.8266 | 0.5177 | 0.6905 |
|
67 |
+
| Llama 3.1 70B | **0.4420** | 0.8288 | 0.6898 | 0.4050 | 0.9196 | 0.7846 | 0.7991 | 0.6566 | 0.5476 | 0.6748 |
|
68 |
+
| Llama 3 Youko 70B | 0.4300 | 0.8291 | 0.6900 | 0.4057 | 0.9222 | 0.7862 | 0.7968 | 0.8275 | 0.4128 | 0.6778 |
|
69 |
+
| Llama 3 Swallow 70B | 0.4240 | 0.8231 | 0.6828 | 0.4059 | 0.9234 | 0.7745 | 0.8143 | 0.7352 | 0.4909 | 0.6749 |
|
70 |
+
| Llama 3.1 Swallow 70B | 0.4320 | 0.8262 | 0.6898 | 0.4018 | 0.9277 | 0.7724 | 0.8089 | 0.8063 | 0.5396 | 0.6894 |
|
71 |
+
|
72 |
+
## Evaluation Benchmarks
|
73 |
+
|
74 |
+
### Japanese evaluation benchmarks
|
75 |
+
|
76 |
+
We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
|
77 |
+
|
78 |
+
- Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
|
79 |
+
- Open-ended question answering (JEMHopQA [Ishii et al., 2024])
|
80 |
+
- Open-ended question answering (NIILC [関根, 2003])
|
81 |
+
- Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
|
82 |
+
- Automatic summarization (XL-Sum [Hasan et al., 2021])
|
83 |
+
- Machine translation (WMT2020 ja-en [Barrault et al., 2020])
|
84 |
+
- Machine translation (WMT2020 en-ja [Barrault et al., 2020])
|
85 |
+
- Mathematical reasoning (MGSM [Shi et al., 2023])
|
86 |
+
- Academic exams (JMMLU [尹ら, 2024])
|
87 |
+
- Code generation (JHumanEval [佐藤ら, 2024])
|
88 |
+
|
89 |
+
### English evaluation benchmarks
|
90 |
+
|
91 |
+
We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
|
92 |
+
|
93 |
+
- Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
|
94 |
+
- Open-ended question answering (TriviaQA [Joshi et al., 2017])
|
95 |
+
- Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
|
96 |
+
- Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
|
97 |
+
- Natural language inference (HellaSwag [Zellers et al., 2019])
|
98 |
+
- Mathematical reasoning (GSM8K [Cobbe et al., 2021])
|
99 |
+
- Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
|
100 |
+
- Academic exams (MMLU [Hendrycks et al., 2021])
|
101 |
+
- Code generation (HumanEval [Chen et al., 2021])
|
102 |
+
|
103 |
+
## Training Datasets
|
104 |
+
|
105 |
+
### Continual Pre-Training
|
106 |
+
The following datasets were used for continual pre-training.
|
107 |
+
|
108 |
+
- [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
|
109 |
+
- [Dclm-baseline-1.0](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0)
|
110 |
+
- [English Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
111 |
+
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
112 |
+
- [Laboro ParaCorpus](https://github.com/laboroai/Laboro-ParaCorpus)
|
113 |
+
- [Swallow Corpus](https://arxiv.org/abs/2404.17733)
|
114 |
+
- [The-stack-v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids)
|
115 |
+
|
116 |
+
## Risks and Limitations
|
117 |
+
|
118 |
+
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
|
119 |
+
|
120 |
+
## Acknowledgements
|
121 |
+
|
122 |
+
We thank Meta Research for releasing Llama 3.1 under an open license for others to build on.
|
123 |
+
|
124 |
+
Our project is supported by the [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
|
125 |
+
|
126 |
+
## License
|
127 |
+
|
128 |
+
[META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)
|
129 |
+
|
130 |
+
## Authors
|
131 |
+
|
132 |
+
Here are the team members:
|
133 |
+
- From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
|
134 |
+
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
|
135 |
+
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
|
136 |
+
- [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
|
137 |
+
- [Koki Maeda](https://sites.google.com/view/silviase)
|
138 |
+
- [Kakeru Hattori](https://aya-se.vercel.app/)
|
139 |
+
- [Masanari Ohi](https://sites.google.com/view/masanariohi)
|
140 |
+
- [Taihei Shiotani](https://github.com/inatoihs)
|
141 |
+
- [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
|
142 |
+
- From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
|
143 |
+
- [Rio Yokota](https://twitter.com/rioyokota)
|
144 |
+
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
|
145 |
+
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
|
146 |
+
- [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
|
147 |
+
- [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
|
148 |
+
- From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
|
149 |
+
- [Hiroya Takamura](https://sites.google.com/view/hjtakamura)
|
150 |
+
|
151 |
+
## How to cite
|
152 |
+
|
153 |
+
If you find our work helpful, please feel free to cite us.
|
154 |
+
|
155 |
+
```
|
156 |
+
@inproceedings{Fujii:COLM2024,
|
157 |
+
title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
|
158 |
+
Enhancing Japanese Language Capabilities},
|
159 |
+
author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
|
160 |
+
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
|
161 |
+
Mizuki and Rio Yokota and Naoaki Okazaki},
|
162 |
+
booktitle="Proceedings of the First Conference on Language Modeling",
|
163 |
+
series={COLM},
|
164 |
+
pages="(to appear)",
|
165 |
+
year="2024",
|
166 |
+
month=oct,
|
167 |
+
address={University of Pennsylvania, USA},
|
168 |
+
}
|
169 |
+
|
170 |
+
@inproceedings{Okazaki:COLM2024,
|
171 |
+
title={Building a Large Japanese Web Corpus for Large Language Models},
|
172 |
+
author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
|
173 |
+
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
|
174 |
+
Loem and Rio Yokota and Sakae Mizuki},
|
175 |
+
booktitle="Proceedings of the First Conference on Language Modeling",
|
176 |
+
series={COLM},
|
177 |
+
pages="(to appear)",
|
178 |
+
year="2024",
|
179 |
+
month=oct,
|
180 |
+
address={University of Pennsylvania, USA},
|
181 |
+
}
|
182 |
+
```
|
183 |
+
|
184 |
+
### Citations
|
185 |
+
|
186 |
+
```tex
|
187 |
+
@misc{dubey2024llama3herdmodels,
|
188 |
+
title={The Llama 3 Herd of Models},
|
189 |
+
author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.},
|
190 |
+
year={2024},
|
191 |
+
eprint={2407.21783},
|
192 |
+
archivePrefix={arXiv},
|
193 |
+
primaryClass={cs.AI},
|
194 |
+
url={https://arxiv.org/abs/2407.21783},
|
195 |
+
}
|
196 |
+
```
|