Taishi-N324
commited on
Commit
•
7b4f46a
1
Parent(s):
8b1b5f2
Upload README.md
Browse files
README.md
CHANGED
@@ -4,66 +4,127 @@ language:
|
|
4 |
- ja
|
5 |
library_name: transformers
|
6 |
pipeline_tag: text-generation
|
7 |
-
|
8 |
license: apache-2.0
|
9 |
---
|
10 |
|
11 |
-
# Swallow-
|
12 |
|
13 |
-
Our Swallow-
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
![logo](./logo.png)
|
16 |
|
|
|
|
|
17 |
## Model Details
|
18 |
|
19 |
-
* **Model type**: Please refer to
|
20 |
* **Language(s)**: Japanese English
|
21 |
-
* **Tokenizer**: This model
|
22 |
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
23 |
|
|
|
24 |
## Base Model Performance
|
25 |
|
26 |
-
### Japanese
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
31 |
-
| Llama 2
|
32 |
-
|
|
33 |
-
|
|
34 |
-
|
|
35 |
-
|
|
36 |
-
|
|
37 |
-
|
|
38 |
-
| Swallow |
|
39 |
-
|
|
40 |
-
|
|
41 |
-
|
|
42 |
-
|
|
43 |
-
|
|
44 |
-
|
45 |
-
|
46 |
-
### English
|
47 |
-
|
48 |
-
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|
|
49 |
-
|
50 |
-
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
| Swallow |
|
59 |
-
| Swallow-
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|Swallow-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
## Usage
|
69 |
|
@@ -79,7 +140,7 @@ pip install -r requirements.txt
|
|
79 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
80 |
import torch
|
81 |
|
82 |
-
model_name = "tokyotech-llm/Swallow-
|
83 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
|
85 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
@@ -111,7 +172,6 @@ The following datasets were used for continual pre-training.
|
|
111 |
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
112 |
- [Swallow Corpus](https://arxiv.org/abs/2404.17733)
|
113 |
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
114 |
-
- [The Vault](https://github.com/FSoft-AI4Code/TheVault)
|
115 |
|
116 |
## Risks and Limitations
|
117 |
|
@@ -119,7 +179,7 @@ The models released here are still in the early stages of our research and devel
|
|
119 |
|
120 |
## Acknowledgements
|
121 |
|
122 |
-
We thank Mistral AI for releasing
|
123 |
|
124 |
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
|
125 |
|
|
|
4 |
- ja
|
5 |
library_name: transformers
|
6 |
pipeline_tag: text-generation
|
7 |
+
model_type: mistral
|
8 |
license: apache-2.0
|
9 |
---
|
10 |
|
11 |
+
# Swallow-MS-7b-v0.1
|
12 |
|
13 |
+
Our Swallow-MS-7b-v0.1 model has undergone continual pre-training from the Mistral-7B-v0.1, primarily with the addition of Japanese language data.
|
14 |
|
15 |
+
# Model Release Updates
|
16 |
+
|
17 |
+
We are excited to share the release schedule for our latest models:
|
18 |
+
- **April 26, 2024**: Released the [Swallow-MS-7b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-instruct-v0.1)
|
19 |
+
- **March 11, 2024**: Released the [Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1)
|
20 |
![logo](./logo.png)
|
21 |
|
22 |
+
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
|
23 |
+
|
24 |
## Model Details
|
25 |
|
26 |
+
* **Model type**: Please refer to Mistral technical report for details on the model architecture.
|
27 |
* **Language(s)**: Japanese English
|
28 |
+
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
|
29 |
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
30 |
|
31 |
+
|
32 |
## Base Model Performance
|
33 |
|
34 |
+
### Japanese tasks
|
35 |
+
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|Average|
|
36 |
+
|---------------------------|-------|---------|-------|-------|-------|------|------------|------------|------|-----|
|
37 |
+
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot||
|
38 |
+
| CyberAgentLM2-7B |7B| 0.2198 | 0.5047 | 0.5066 | 0.7799 | 0.0233 | 0.0600 | 0.2345 | 0.1499 | 0.3098 |
|
39 |
+
| Llama 2 |7B| 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | 0.3201 |
|
40 |
+
| japanese-stablelm-base-beta-7b|7B| 0.3610 | 0.4478 | 0.4432 | 0.8318 | 0.2195 | 0.0720 | 0.1946 | 0.1226 | 0.3366 |
|
41 |
+
| japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.2172 | 0.4482 | 0.4309 | 0.8202 | 0.0757 | 0.0520 | 0.1601 | 0.1453 | 0.2937 |
|
42 |
+
| ELYZA-japanese-Llama-2-7b|7B| 0.5791 | 0.4703 | 0.4019 | 0.8226 | 0.1312 | 0.0600 | 0.1795 | 0.1289 | 0.3467 |
|
43 |
+
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.5308 | 0.4330 | 0.3898 | 0.8131 | 0.1289 | 0.0720 | 0.1678 | 0.1143 | 0.3312 |
|
44 |
+
| youri-7b (base) |7B| 0.4620 | 0.4776 | 0.4999 | 0.8506 | 0.1957 | 0.0640 | 0.2671 | **0.1971** | 0.3768 |
|
45 |
+
| Swallow-7b |7B| 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | 0.3940 |
|
46 |
+
| Swallow-7b-plus |7B| 0.5478 | **0.5493** | **0.6030** | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | 0.4090 |
|
47 |
+
| Qwen-7B |7B| 0.7712 | 0.4234 | 0.2376 | 0.8594 | 0.1371 | 0.2160 | 0.1689 | 0.1801 | 0.3742 |
|
48 |
+
| nekomata-7b |7B| 0.7417 | 0.4928 | 0.5022 | 0.8707 | 0.1676 | 0.1240 | **0.2673** | 0.1815 | 0.4185 |
|
49 |
+
| Mistral-7B-v0.1 |7B| 0.7301 | 0.4245 | 0.2722 | 0.8563 | 0.2006 | 0.1760 | 0.1405 | 0.1733 | 0.3717 |
|
50 |
+
| japanese-stablelm-base-gamma-7b|7B| 0.7364 | 0.4643 | 0.5568 | **0.8910** | **0.2293** | 0.1680 | 0.2390 | 0.1561 | 0.4301 |
|
51 |
+
| Swallow-MS-7b-v0.1 |7B| **0.8570** | 0.4915 | 0.5519 | 0.8802 | 0.1988 | **0.2240** | 0.2494 | 0.1667 | **0.4524** |
|
52 |
+
|
53 |
+
|
54 |
+
### English tasks
|
55 |
+
|
56 |
+
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|Average|
|
57 |
+
|---|---|---|---|---|---|---|---|---|
|
58 |
+
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot||
|
59 |
+
| CyberAgentLM2-7B |7B| 0.2860 | 0.3496 | 0.5003 | 0.3510 | 0.8581 | 0.0705 | 0.4026 |
|
60 |
+
| Llama 2 |7B| 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | 0.4895 |
|
61 |
+
| japanese-stablelm-base-beta-7b|7B| 0.3620 | 0.5903 | 0.5707 | 0.2992 | 0.8994 | 0.1198 | 0.4736 |
|
62 |
+
| japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.3520 | 0.5549 | 0.5644 | 0.3079 | 0.8942 | 0.0538 | 0.4545 |
|
63 |
+
| ELYZA-japanese-Llama-2-7b|7B| 0.3400 | 0.5875 | 0.5595 | 0.2721 | 0.8989 | 0.1638 | 0.4703 |
|
64 |
+
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.3280 | 0.5817 | 0.5530 | 0.2605 | 0.8989 | 0.1425 | 0.4608 |
|
65 |
+
| youri-7b (base) |7B| 0.3400 | 0.5257 | 0.5540 | 0.3297 | 0.8938 | 0.0963 | 0.4566 |
|
66 |
+
| Swallow-7b |7B| 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | 0.4399 |
|
67 |
+
| Swallow-7b-plus |7B| 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | 0.4370 |
|
68 |
+
| Qwen-7B |7B| 0.3640 | 0.5695 | 0.5787 | **0.3799** | 0.8933 | **0.4617** | 0.5412 |
|
69 |
+
| nekomata-7b |7B| 0.3340 | 0.4371 | 0.5340 | 0.2933 | 0.8766 | 0.1531 | 0.4380 |
|
70 |
+
| Mistral-7B-v0.1 |7B| **0.3660** | **0.7050** | **0.6264** | **0.3799** | **0.9157** | 0.3533 | **0.5577** |
|
71 |
+
| japanese-stablelm-base-gamma-7b|7B| 0.3240 | 0.5745 | 0.5739 | 0.3546 | 0.8976 | 0.1911 | 0.4860 |
|
72 |
+
| Swallow-MS-7b-v0.1 |7B| 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 | 0.5042 |
|
73 |
+
|
74 |
+
|
75 |
+
### Code generation tasks
|
76 |
+
|
77 |
+
|Model|Size|JHumanEval|HumanEval|
|
78 |
+
|---|---|---|---|
|
79 |
+
| | |pass@1|pass@1|
|
80 |
+
| CyberAgentLM2-7B |7B|0.0634|0.0756|
|
81 |
+
| Llama 2 |7B|0.1152|0.1378|
|
82 |
+
| japanese-stablelm-base-beta-7b|7B|0.1018|0.1280|
|
83 |
+
| japanese-stablelm-base-ja_vocab-beta-7b|7B|0.0896|0.1122|
|
84 |
+
| ELYZA-japanese-Llama-2-7b|7B|0.0287|0.0427|
|
85 |
+
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.0000 |0.0037|
|
86 |
+
| youri-7b (base) |7B|0.0829|0.0982|
|
87 |
+
| Swallow-7b |7B|0.0183|0.0183|
|
88 |
+
| Swallow-7b-plus |7B| 0.0061|0.0037|
|
89 |
+
| Qwen-7B |7B|0.1701|0.1805|
|
90 |
+
| nekomata-7b |7B|0.0988|0.1402|
|
91 |
+
| Mistral-7B-v0.1 |7B|**0.2555**|**0.2933**|
|
92 |
+
| japanese-stablelm-base-gamma-7b|7B|0.1823|0.1915|
|
93 |
+
| Swallow-MS-7b-v0.1 |7B|0.2305|0.2768|
|
94 |
+
|
95 |
+
## Evaluation Benchmarks
|
96 |
+
|
97 |
+
### Japanese evaluation benchmarks
|
98 |
+
|
99 |
+
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:
|
100 |
+
|
101 |
+
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
|
102 |
+
- Open-ended question answering (JEMHopQA [Ishii+, 2023])
|
103 |
+
- Open-ended question answering (NIILC [Sekine, 2003])
|
104 |
+
- Machine reading comprehension (JSQuAD [Kurihara+, 2022])
|
105 |
+
- Automatic summarization (XL-Sum [Hasan+, 2021])
|
106 |
+
- Machine translation (WMT2020 ja-en [Barrault+, 2020])
|
107 |
+
- Machine translation (WMT2020 en-ja [Barrault+, 2020])
|
108 |
+
- Mathematical reasoning (MGSM [Shi+, 2023])
|
109 |
+
|
110 |
+
### English evaluation benchmarks
|
111 |
+
|
112 |
+
We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows:
|
113 |
+
|
114 |
+
- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018])
|
115 |
+
- Open-ended question answering (TriviaQA [Joshi+, 2017])
|
116 |
+
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018])
|
117 |
+
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021])
|
118 |
+
- Natural language inference (HellaSwag [Zellers+, 2019])
|
119 |
+
- Mathematical reasoning (GSM8k [Cobbe+, 2021])
|
120 |
+
|
121 |
+
### Code evaluation benchmarks
|
122 |
+
|
123 |
+
We utilized the Code Generation LM Evaluation Harness [Allal+, 2022] (commit #0261c52). The details are as follows:
|
124 |
+
|
125 |
+
- Code generation (HumanEval [Chen+, 2021])
|
126 |
+
- Code generation in Japanese (JHumanEval [Satoh+, 2024])
|
127 |
+
|
128 |
|
129 |
## Usage
|
130 |
|
|
|
140 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
141 |
import torch
|
142 |
|
143 |
+
model_name = "tokyotech-llm/Swallow-MS-7b-v0.1"
|
144 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
145 |
|
146 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
|
|
172 |
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
173 |
- [Swallow Corpus](https://arxiv.org/abs/2404.17733)
|
174 |
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
|
|
175 |
|
176 |
## Risks and Limitations
|
177 |
|
|
|
179 |
|
180 |
## Acknowledgements
|
181 |
|
182 |
+
We thank Mistral AI for releasing Mistral 7B v0.1 under an open license for others to build on.
|
183 |
|
184 |
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
|
185 |
|