ModernBERT-base-gooaq / train_st_gooaq.py
tomaarsen's picture
tomaarsen HF staff
Upload train_st_gooaq.py
ac307cc verified
raw
history blame
3.17 kB
# Copyright 2024 onwards Answer.AI, LightOn, and contributors
# License: Apache-2.0
import argparse
from datasets import load_dataset
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
)
from sentence_transformers.evaluation import NanoBEIREvaluator
from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers
def main():
# parse the lr & model name
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=8e-5)
parser.add_argument("--model_name", type=str, default="answerdotai/ModernBERT-base")
args = parser.parse_args()
lr = args.lr
model_name = args.model_name
model_shortname = model_name.split("/")[-1]
# 1. Load a model to finetune
model = SentenceTransformer(model_name)
# 2. Load a dataset to finetune on
dataset = load_dataset("sentence-transformers/gooaq", split="train")
dataset_dict = dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
# 3. Define a loss function
loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=128) # Increase mini_batch_size if you have enough VRAM
run_name = f"{model_shortname}-gooaq-{lr}"
# 4. (Optional) Specify training arguments
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"output/{model_shortname}/{run_name}",
# Optional training parameters:
num_train_epochs=1,
per_device_train_batch_size=2048,
per_device_eval_batch_size=2048,
learning_rate=lr,
warmup_ratio=0.05,
fp16=False, # Set to False if GPU can't handle FP16
bf16=True, # Set to True if GPU supports BF16
batch_sampler=BatchSamplers.NO_DUPLICATES, # (Cached)MultipleNegativesRankingLoss benefits from no duplicates
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=50,
save_strategy="steps",
save_steps=50,
save_total_limit=2,
logging_steps=10,
run_name=run_name, # Used in `wandb`, `tensorboard`, `neptune`, etc. if installed
)
# 5. (Optional) Create an evaluator & evaluate the base model
dev_evaluator = NanoBEIREvaluator(dataset_names=["NQ", "MSMARCO"])
dev_evaluator(model)
# 6. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=dev_evaluator,
)
trainer.train()
# 7. (Optional) Evaluate the trained model on the evaluator after training
dev_evaluator(model)
# 8. Save the model
model.save_pretrained(f"output/{model_shortname}/{run_name}/final")
# 9. (Optional) Push it to the Hugging Face Hub
model.push_to_hub(run_name, private=False)
if __name__ == "__main__":
main()