File size: 47,777 Bytes
e34179d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d21a15
 
e34179d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3011496
- loss:CachedMultipleNegativesRankingLoss
base_model: chandar-lab/NeoBERT
widget:
- source_sentence: how much percent of alcohol is in scotch?
  sentences:
  - Our 24-hour day comes from the ancient Egyptians who divided day-time into 10
    hours they measured with devices such as shadow clocks, and added a twilight hour
    at the beginning and another one at the end of the day-time, says Lomb. "Night-time
    was divided in 12 hours, based on the observations of stars.
  - After distillation, a Scotch Whisky can be anywhere between 60-75% ABV, with American
    Whiskey rocketing right into the 90% region. Before being placed in casks, Scotch
    is usually diluted to around 63.5% ABV (68% for grain); welcome to the stage cask
    strength Whisky.
  - Money For Nothing. In season four Dominic West, the ostensible star of the series,
    requested a reduced role so that he could spend more time with his family in London.
    On the show it was explained that Jimmy McNulty had taken a patrol job which required
    less strenuous work.
- source_sentence: what are the major causes of poor listening?
  sentences:
  - The four main causes of poor listening are due to not concentrating, listening
    too hard, jumping to conclusions and focusing on delivery and personal appearance.
    Sometimes we just don't feel attentive enough and hence don't concentrate.
  - That's called being idle. “System Idle Process” is the software that runs when
    the computer has absolutely nothing better to do. It has the lowest possible priority
    and uses as few resources as possible, so that if anything at all comes along
    for the CPU to work on, it can.
  - 'No alcohol wine: how it''s made It''s not easy. There are three main methods
    currently in use. Vacuum distillation sees alcohol and other volatiles removed
    at a relatively low temperature (25°C-30°C), with aromatics blended back in afterwards.'
- source_sentence: are jess and justin still together?
  sentences:
  - Download photos and videos to your device On your iPhone, iPad, or iPod touch,
    tap Settings > [your name] > iCloud > Photos. Then select Download and Keep Originals
    and import the photos to your computer. On your Mac, open the Photos app. Select
    the photos and videos you want to copy.
  - Later, Justin reunites with Jessica at prom and the two get back together. ...
    After a tearful goodbye to Jessica, the Jensens, and his friends, Justin dies
    just before graduation.
  - Incumbent president Muhammadu Buhari won his reelection bid, defeating his closest
    rival Atiku Abubakar by over 3 million votes. He was issued a Certificate of Return,
    and was sworn in on May 29, 2019, the former date of Democracy Day (Nigeria).
- source_sentence: when humans are depicted in hindu art?
  sentences:
  - 'Answer: Humans are depicted in Hindu art often in sensuous and erotic postures.'
  - Bettas are carnivores. They require foods high in animal protein. Their preferred
    diet in nature includes insects and insect larvae. In captivity, they thrive on
    a varied diet of pellets or flakes made from fish meal, as well as frozen or freeze-dried
    bloodworms.
  - An active continental margin is found on the leading edge of the continent where
    it is crashing into an oceanic plate. ... Passive continental margins are found
    along the remaining coastlines.
- source_sentence: what is the difference between 18 and 20 inch tires?
  sentences:
  - '[''Alienware m17 R3. The best gaming laptop overall offers big power in slim,
    redesigned chassis. ... '', ''Dell G3 15. ... '', ''Asus ROG Zephyrus G14. ...
    '', ''Lenovo Legion Y545. ... '', ''Alienware Area 51m. ... '', ''Asus ROG Mothership.
    ... '', ''Asus ROG Strix Scar III. ... '', ''HP Omen 17 (2019)'']'
  - So extracurricular activities are just activities that you do outside of class.
    The Common App says that extracurricular activities "include arts, athletics,
    clubs, employment, personal commitments, and other pursuits."
  - The only real difference is a 20" rim would be more likely to be damaged, as you
    pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the
    availability of tires will likely be much more limited for the larger rim. ...
    Tire selection is better for 18" wheels than 20" wheels.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on chandar-lab/NeoBERT
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.46
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.64
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.76
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.46
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.43
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.62
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.68
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.73
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.592134936685869
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5606666666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5501347879979241
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.32
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.58
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.136
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07400000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.32
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.58
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.68
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.74
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5415424816174165
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4768333333333334
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.49019229786708785
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.39
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.61
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.69
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.75
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.39
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07700000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.375
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.68
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.735
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5668387091516427
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.51875
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.520163542932506
      name: Cosine Map@100
---

# SentenceTransformer based on chandar-lab/NeoBERT

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [chandar-lab/NeoBERT](https://huggingface.co/chandar-lab/NeoBERT) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model has been finetuned using [train_st_gooaq.py](train_st_gooaq.py) using an RTX 3090. It used the same training script as [tomaarsen/ModernBERT-base-gooaq](https://huggingface.co/tomaarsen/ModernBERT-base-gooaq).

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [chandar-lab/NeoBERT](https://huggingface.co/chandar-lab/NeoBERT) <!-- at revision d97a4acdc851efed665d0550ea5704f00ad3ef76 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NeoBERT 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/NeoBERT-gooaq-8e-05")
# Run inference
sentences = [
    'what is the difference between 18 and 20 inch tires?',
    'The only real difference is a 20" rim would be more likely to be damaged, as you pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the availability of tires will likely be much more limited for the larger rim. ... Tire selection is better for 18" wheels than 20" wheels.',
    'So extracurricular activities are just activities that you do outside of class. The Common App says that extracurricular activities "include arts, athletics, clubs, employment, personal commitments, and other pursuits."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoNQ` and `NanoMSMARCO`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoNQ     | NanoMSMARCO |
|:--------------------|:-----------|:------------|
| cosine_accuracy@1   | 0.46       | 0.32        |
| cosine_accuracy@3   | 0.64       | 0.58        |
| cosine_accuracy@5   | 0.7        | 0.68        |
| cosine_accuracy@10  | 0.76       | 0.74        |
| cosine_precision@1  | 0.46       | 0.32        |
| cosine_precision@3  | 0.22       | 0.1933      |
| cosine_precision@5  | 0.144      | 0.136       |
| cosine_precision@10 | 0.08       | 0.074       |
| cosine_recall@1     | 0.43       | 0.32        |
| cosine_recall@3     | 0.62       | 0.58        |
| cosine_recall@5     | 0.68       | 0.68        |
| cosine_recall@10    | 0.73       | 0.74        |
| **cosine_ndcg@10**  | **0.5921** | **0.5415**  |
| cosine_mrr@10       | 0.5607     | 0.4768      |
| cosine_map@100      | 0.5501     | 0.4902      |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.39       |
| cosine_accuracy@3   | 0.61       |
| cosine_accuracy@5   | 0.69       |
| cosine_accuracy@10  | 0.75       |
| cosine_precision@1  | 0.39       |
| cosine_precision@3  | 0.2067     |
| cosine_precision@5  | 0.14       |
| cosine_precision@10 | 0.077      |
| cosine_recall@1     | 0.375      |
| cosine_recall@3     | 0.6        |
| cosine_recall@5     | 0.68       |
| cosine_recall@10    | 0.735      |
| **cosine_ndcg@10**  | **0.5668** |
| cosine_mrr@10       | 0.5188     |
| cosine_map@100      | 0.5202     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,011,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.87 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.09 tokens</li><li>max: 201 tokens</li></ul> |
* Samples:
  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                           |
  |:-----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is the difference between clay and mud mask?</code>               | <code>The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.</code>                                                                                          |
  | <code>myki how much on card?</code>                                          | <code>A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.</code>                                                                                                                                        |
  | <code>how to find out if someone blocked your phone number on iphone?</code> | <code>If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 1,000 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i program my directv remote with my tv?</code>                  | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code>                                                                                               |
  | <code>are rodrigues fruit bats nocturnal?</code>                             | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code>                                                                                                  |
  | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 8e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | Validation Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:---------------------:|:--------------------------:|:----------------------------:|
| -1     | -1   | -             | -               | 0.0428                | 0.1127                     | 0.0777                       |
| 0.0068 | 10   | 4.2332        | -               | -                     | -                          | -                            |
| 0.0136 | 20   | 1.5303        | -               | -                     | -                          | -                            |
| 0.0204 | 30   | 0.887         | -               | -                     | -                          | -                            |
| 0.0272 | 40   | 0.6286        | -               | -                     | -                          | -                            |
| 0.0340 | 50   | 0.5193        | 0.2091          | 0.4434                | 0.4454                     | 0.4444                       |
| 0.0408 | 60   | 0.4423        | -               | -                     | -                          | -                            |
| 0.0476 | 70   | 0.3842        | -               | -                     | -                          | -                            |
| 0.0544 | 80   | 0.3576        | -               | -                     | -                          | -                            |
| 0.0612 | 90   | 0.3301        | -               | -                     | -                          | -                            |
| 0.0680 | 100  | 0.3135        | 0.1252          | 0.4606                | 0.5150                     | 0.4878                       |
| 0.0748 | 110  | 0.302         | -               | -                     | -                          | -                            |
| 0.0816 | 120  | 0.277         | -               | -                     | -                          | -                            |
| 0.0884 | 130  | 0.2694        | -               | -                     | -                          | -                            |
| 0.0952 | 140  | 0.2628        | -               | -                     | -                          | -                            |
| 0.1020 | 150  | 0.2471        | 0.0949          | 0.5135                | 0.5133                     | 0.5134                       |
| 0.1088 | 160  | 0.2343        | -               | -                     | -                          | -                            |
| 0.1156 | 170  | 0.2386        | -               | -                     | -                          | -                            |
| 0.1224 | 180  | 0.219         | -               | -                     | -                          | -                            |
| 0.1292 | 190  | 0.217         | -               | -                     | -                          | -                            |
| 0.1360 | 200  | 0.2073        | 0.0870          | 0.5281                | 0.4824                     | 0.5052                       |
| 0.1428 | 210  | 0.2208        | -               | -                     | -                          | -                            |
| 0.1496 | 220  | 0.2046        | -               | -                     | -                          | -                            |
| 0.1564 | 230  | 0.2045        | -               | -                     | -                          | -                            |
| 0.1632 | 240  | 0.1987        | -               | -                     | -                          | -                            |
| 0.1700 | 250  | 0.1949        | 0.0734          | 0.5781                | 0.4976                     | 0.5378                       |
| 0.1768 | 260  | 0.1888        | -               | -                     | -                          | -                            |
| 0.1835 | 270  | 0.187         | -               | -                     | -                          | -                            |
| 0.1903 | 280  | 0.1834        | -               | -                     | -                          | -                            |
| 0.1971 | 290  | 0.1747        | -               | -                     | -                          | -                            |
| 0.2039 | 300  | 0.1805        | 0.0663          | 0.5580                | 0.5453                     | 0.5516                       |
| 0.2107 | 310  | 0.1738        | -               | -                     | -                          | -                            |
| 0.2175 | 320  | 0.1707        | -               | -                     | -                          | -                            |
| 0.2243 | 330  | 0.1758        | -               | -                     | -                          | -                            |
| 0.2311 | 340  | 0.1762        | -               | -                     | -                          | -                            |
| 0.2379 | 350  | 0.1649        | 0.0624          | 0.5761                | 0.5310                     | 0.5535                       |
| 0.2447 | 360  | 0.1682        | -               | -                     | -                          | -                            |
| 0.2515 | 370  | 0.1629        | -               | -                     | -                          | -                            |
| 0.2583 | 380  | 0.1595        | -               | -                     | -                          | -                            |
| 0.2651 | 390  | 0.1571        | -               | -                     | -                          | -                            |
| 0.2719 | 400  | 0.1617        | 0.0592          | 0.5865                | 0.5193                     | 0.5529                       |
| 0.2787 | 410  | 0.1521        | -               | -                     | -                          | -                            |
| 0.2855 | 420  | 0.1518        | -               | -                     | -                          | -                            |
| 0.2923 | 430  | 0.1583        | -               | -                     | -                          | -                            |
| 0.2991 | 440  | 0.1516        | -               | -                     | -                          | -                            |
| 0.3059 | 450  | 0.1473        | 0.0570          | 0.5844                | 0.5181                     | 0.5512                       |
| 0.3127 | 460  | 0.1491        | -               | -                     | -                          | -                            |
| 0.3195 | 470  | 0.1487        | -               | -                     | -                          | -                            |
| 0.3263 | 480  | 0.1457        | -               | -                     | -                          | -                            |
| 0.3331 | 490  | 0.1463        | -               | -                     | -                          | -                            |
| 0.3399 | 500  | 0.141         | 0.0571          | 0.5652                | 0.5027                     | 0.5340                       |
| 0.3467 | 510  | 0.1438        | -               | -                     | -                          | -                            |
| 0.3535 | 520  | 0.148         | -               | -                     | -                          | -                            |
| 0.3603 | 530  | 0.136         | -               | -                     | -                          | -                            |
| 0.3671 | 540  | 0.1359        | -               | -                     | -                          | -                            |
| 0.3739 | 550  | 0.1388        | 0.0507          | 0.5457                | 0.4660                     | 0.5058                       |
| 0.3807 | 560  | 0.1358        | -               | -                     | -                          | -                            |
| 0.3875 | 570  | 0.1365        | -               | -                     | -                          | -                            |
| 0.3943 | 580  | 0.1328        | -               | -                     | -                          | -                            |
| 0.4011 | 590  | 0.1404        | -               | -                     | -                          | -                            |
| 0.4079 | 600  | 0.1304        | 0.0524          | 0.5477                | 0.5259                     | 0.5368                       |
| 0.4147 | 610  | 0.1321        | -               | -                     | -                          | -                            |
| 0.4215 | 620  | 0.1322        | -               | -                     | -                          | -                            |
| 0.4283 | 630  | 0.1262        | -               | -                     | -                          | -                            |
| 0.4351 | 640  | 0.1339        | -               | -                     | -                          | -                            |
| 0.4419 | 650  | 0.1257        | 0.0494          | 0.5564                | 0.4920                     | 0.5242                       |
| 0.4487 | 660  | 0.1247        | -               | -                     | -                          | -                            |
| 0.4555 | 670  | 0.1316        | -               | -                     | -                          | -                            |
| 0.4623 | 680  | 0.124         | -               | -                     | -                          | -                            |
| 0.4691 | 690  | 0.1247        | -               | -                     | -                          | -                            |
| 0.4759 | 700  | 0.1212        | 0.0480          | 0.5663                | 0.5040                     | 0.5351                       |
| 0.4827 | 710  | 0.1194        | -               | -                     | -                          | -                            |
| 0.4895 | 720  | 0.1224        | -               | -                     | -                          | -                            |
| 0.4963 | 730  | 0.1225        | -               | -                     | -                          | -                            |
| 0.5031 | 740  | 0.1209        | -               | -                     | -                          | -                            |
| 0.5099 | 750  | 0.1197        | 0.0447          | 0.5535                | 0.5127                     | 0.5331                       |
| 0.5167 | 760  | 0.1196        | -               | -                     | -                          | -                            |
| 0.5235 | 770  | 0.1129        | -               | -                     | -                          | -                            |
| 0.5303 | 780  | 0.1223        | -               | -                     | -                          | -                            |
| 0.5370 | 790  | 0.1159        | -               | -                     | -                          | -                            |
| 0.5438 | 800  | 0.1178        | 0.0412          | 0.5558                | 0.5275                     | 0.5416                       |
| 0.5506 | 810  | 0.1186        | -               | -                     | -                          | -                            |
| 0.5574 | 820  | 0.1153        | -               | -                     | -                          | -                            |
| 0.5642 | 830  | 0.1178        | -               | -                     | -                          | -                            |
| 0.5710 | 840  | 0.1155        | -               | -                     | -                          | -                            |
| 0.5778 | 850  | 0.1152        | 0.0432          | 0.5738                | 0.5243                     | 0.5490                       |
| 0.5846 | 860  | 0.1101        | -               | -                     | -                          | -                            |
| 0.5914 | 870  | 0.1057        | -               | -                     | -                          | -                            |
| 0.5982 | 880  | 0.1141        | -               | -                     | -                          | -                            |
| 0.6050 | 890  | 0.1172        | -               | -                     | -                          | -                            |
| 0.6118 | 900  | 0.1146        | 0.0414          | 0.5641                | 0.4805                     | 0.5223                       |
| 0.6186 | 910  | 0.1094        | -               | -                     | -                          | -                            |
| 0.6254 | 920  | 0.1116        | -               | -                     | -                          | -                            |
| 0.6322 | 930  | 0.111         | -               | -                     | -                          | -                            |
| 0.6390 | 940  | 0.1078        | -               | -                     | -                          | -                            |
| 0.6458 | 950  | 0.1041        | 0.0424          | 0.5883                | 0.5412                     | 0.5647                       |
| 0.6526 | 960  | 0.1068        | -               | -                     | -                          | -                            |
| 0.6594 | 970  | 0.1076        | -               | -                     | -                          | -                            |
| 0.6662 | 980  | 0.1068        | -               | -                     | -                          | -                            |
| 0.6730 | 990  | 0.1038        | -               | -                     | -                          | -                            |
| 0.6798 | 1000 | 0.1017        | 0.0409          | 0.5850                | 0.5117                     | 0.5483                       |
| 0.6866 | 1010 | 0.1079        | -               | -                     | -                          | -                            |
| 0.6934 | 1020 | 0.1067        | -               | -                     | -                          | -                            |
| 0.7002 | 1030 | 0.1079        | -               | -                     | -                          | -                            |
| 0.7070 | 1040 | 0.1039        | -               | -                     | -                          | -                            |
| 0.7138 | 1050 | 0.1016        | 0.0356          | 0.5927                | 0.5344                     | 0.5636                       |
| 0.7206 | 1060 | 0.1017        | -               | -                     | -                          | -                            |
| 0.7274 | 1070 | 0.1029        | -               | -                     | -                          | -                            |
| 0.7342 | 1080 | 0.1038        | -               | -                     | -                          | -                            |
| 0.7410 | 1090 | 0.0994        | -               | -                     | -                          | -                            |
| 0.7478 | 1100 | 0.0984        | 0.0376          | 0.5618                | 0.5321                     | 0.5470                       |
| 0.7546 | 1110 | 0.0966        | -               | -                     | -                          | -                            |
| 0.7614 | 1120 | 0.1024        | -               | -                     | -                          | -                            |
| 0.7682 | 1130 | 0.099         | -               | -                     | -                          | -                            |
| 0.7750 | 1140 | 0.1017        | -               | -                     | -                          | -                            |
| 0.7818 | 1150 | 0.0951        | 0.0368          | 0.5832                | 0.5073                     | 0.5453                       |
| 0.7886 | 1160 | 0.1008        | -               | -                     | -                          | -                            |
| 0.7954 | 1170 | 0.096         | -               | -                     | -                          | -                            |
| 0.8022 | 1180 | 0.0962        | -               | -                     | -                          | -                            |
| 0.8090 | 1190 | 0.1004        | -               | -                     | -                          | -                            |
| 0.8158 | 1200 | 0.0986        | 0.0321          | 0.5895                | 0.5242                     | 0.5568                       |
| 0.8226 | 1210 | 0.0966        | -               | -                     | -                          | -                            |
| 0.8294 | 1220 | 0.096         | -               | -                     | -                          | -                            |
| 0.8362 | 1230 | 0.0962        | -               | -                     | -                          | -                            |
| 0.8430 | 1240 | 0.0987        | -               | -                     | -                          | -                            |
| 0.8498 | 1250 | 0.096         | 0.0316          | 0.5801                | 0.5434                     | 0.5617                       |
| 0.8566 | 1260 | 0.097         | -               | -                     | -                          | -                            |
| 0.8634 | 1270 | 0.0929        | -               | -                     | -                          | -                            |
| 0.8702 | 1280 | 0.0973        | -               | -                     | -                          | -                            |
| 0.8770 | 1290 | 0.0973        | -               | -                     | -                          | -                            |
| 0.8838 | 1300 | 0.0939        | 0.0330          | 0.5916                | 0.5478                     | 0.5697                       |
| 0.8906 | 1310 | 0.0968        | -               | -                     | -                          | -                            |
| 0.8973 | 1320 | 0.0969        | -               | -                     | -                          | -                            |
| 0.9041 | 1330 | 0.0931        | -               | -                     | -                          | -                            |
| 0.9109 | 1340 | 0.0919        | -               | -                     | -                          | -                            |
| 0.9177 | 1350 | 0.0916        | 0.0324          | 0.5908                | 0.5308                     | 0.5608                       |
| 0.9245 | 1360 | 0.0903        | -               | -                     | -                          | -                            |
| 0.9313 | 1370 | 0.0957        | -               | -                     | -                          | -                            |
| 0.9381 | 1380 | 0.0891        | -               | -                     | -                          | -                            |
| 0.9449 | 1390 | 0.0909        | -               | -                     | -                          | -                            |
| 0.9517 | 1400 | 0.0924        | 0.0318          | 0.5823                | 0.5388                     | 0.5605                       |
| 0.9585 | 1410 | 0.0932        | -               | -                     | -                          | -                            |
| 0.9653 | 1420 | 0.0916        | -               | -                     | -                          | -                            |
| 0.9721 | 1430 | 0.0966        | -               | -                     | -                          | -                            |
| 0.9789 | 1440 | 0.0864        | -               | -                     | -                          | -                            |
| 0.9857 | 1450 | 0.0872        | 0.0311          | 0.5895                | 0.5442                     | 0.5668                       |
| 0.9925 | 1460 | 0.0897        | -               | -                     | -                          | -                            |
| 0.9993 | 1470 | 0.086         | -               | -                     | -                          | -                            |
| -1     | -1   | -             | -               | 0.5921                | 0.5415                     | 0.5668                       |

</details>

### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 2.21.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->