---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: There's a dock
sentences:
- A boat docked on a river.
- The girl is standing.
- The boy is sleeping.
- source_sentence: The boy scowls
sentences:
- The boy is smiling
- A story book is open.
- Two women are sleeping.
- source_sentence: A bird flying.
sentences:
- an eagle flies
- The person is amused.
- Two men are sleeping.
- source_sentence: an eagle flies
sentences:
- A butterfly flys freely.
- Two men are sleeping.
- Some men sleep.
- source_sentence: A woman sings.
sentences:
- The woman is singing.
- a man is wearing blue
- The boy is sleeping.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 1.414068558007261
energy_consumed: 0.003637924574628535
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.02
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7472500570689873
name: Pearson Cosine
- type: spearman_cosine
value: 0.7815286852337371
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7466164303556344
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7564406124153681
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7470476982963574
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7553538112024218
name: Spearman Euclidean
- type: pearson_dot
value: 0.46791742113291
name: Pearson Dot
- type: spearman_dot
value: 0.48306144010812363
name: Spearman Dot
- type: pearson_max
value: 0.7472500570689873
name: Pearson Max
- type: spearman_max
value: 0.7815286852337371
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7145936155377322
name: Pearson Cosine
- type: spearman_cosine
value: 0.7188509446042572
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7144637059488601
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7051742909657058
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7150126984629757
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7054604043597239
name: Spearman Euclidean
- type: pearson_dot
value: 0.4317482386066799
name: Pearson Dot
- type: spearman_dot
value: 0.4292906929274994
name: Spearman Dot
- type: pearson_max
value: 0.7150126984629757
name: Pearson Max
- type: spearman_max
value: 0.7188509446042572
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilroberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-v2")
# Run inference
sentences = [
'A woman sings.',
'The woman is singing.',
'a man is wearing blue',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7473 |
| **spearman_cosine** | **0.7815** |
| pearson_manhattan | 0.7466 |
| spearman_manhattan | 0.7564 |
| pearson_euclidean | 0.747 |
| spearman_euclidean | 0.7554 |
| pearson_dot | 0.4679 |
| spearman_dot | 0.4831 |
| pearson_max | 0.7473 |
| spearman_max | 0.7815 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7146 |
| **spearman_cosine** | **0.7189** |
| pearson_manhattan | 0.7145 |
| spearman_manhattan | 0.7052 |
| pearson_euclidean | 0.715 |
| spearman_euclidean | 0.7055 |
| pearson_dot | 0.4317 |
| spearman_dot | 0.4293 |
| pearson_max | 0.715 |
| spearman_max | 0.7189 |
## Training Details
### Training Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
* Size: 10,000 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| A person is at a diner, ordering an omelette.
|
| Children smiling and waving at camera
| There are children present
| The kids are frowning
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
| The boy skates down the sidewalk.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
* Size: 1,000 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Two women are embracing while holding to go packages.
| Two woman are holding packages.
| The men are fighting outside a deli.
|
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
| Two kids in numbered jerseys wash their hands.
| Two kids in jackets walk to school.
|
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles
| A man selling donuts to a customer.
| A woman drinks her coffee in a small cafe.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters