tomaarsen HF staff commited on
Commit
91222d3
1 Parent(s): a7438d3

Rename model

Browse files
Files changed (1) hide show
  1. README.md +42 -9
README.md CHANGED
@@ -9,12 +9,10 @@ tags:
9
 
10
  ---
11
 
12
- # tomaarsen/mpnet-base-all-nli-matryoshka
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/TRQAVBKtW6NyTnC5BnTu1.png)
17
-
18
  <!--- Describe your model here -->
19
 
20
  ## Usage (Sentence-Transformers)
@@ -31,7 +29,7 @@ Then you can use the model like this:
31
  from sentence_transformers import SentenceTransformer
32
  sentences = ["This is an example sentence", "Each sentence is converted"]
33
 
34
- model = SentenceTransformer('tomaarsen/mpnet-base-all-nli-matryoshka')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
@@ -57,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
57
  sentences = ['This is an example sentence', 'Each sentence is converted']
58
 
59
  # Load model from HuggingFace Hub
60
- tokenizer = AutoTokenizer.from_pretrained('tomaarsen/mpnet-base-all-nli-matryoshka')
61
- model = AutoModel.from_pretrained('tomaarsen/mpnet-base-all-nli-matryoshka')
62
 
63
  # Tokenize sentences
64
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -80,15 +78,50 @@ print(sentence_embeddings)
80
 
81
  <!--- Describe how your model was evaluated -->
82
 
83
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tomaarsen/mpnet-base-all-nli-matryoshka)
 
 
 
 
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
 
87
  ## Full Model Architecture
88
  ```
89
  SentenceTransformer(
90
- (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
91
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
92
  )
93
  ```
94
 
 
9
 
10
  ---
11
 
12
+ # tomaarsen/mpnet-base-nli-matryoshka
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
 
 
16
  <!--- Describe your model here -->
17
 
18
  ## Usage (Sentence-Transformers)
 
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
+ model = SentenceTransformer('tomaarsen/mpnet-base-nli-matryoshka')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
 
55
  sentences = ['This is an example sentence', 'Each sentence is converted']
56
 
57
  # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('tomaarsen/mpnet-base-nli-matryoshka')
59
+ model = AutoModel.from_pretrained('tomaarsen/mpnet-base-nli-matryoshka')
60
 
61
  # Tokenize sentences
62
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
78
 
79
  <!--- Describe how your model was evaluated -->
80
 
81
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tomaarsen/mpnet-base-nli-matryoshka)
82
+
83
+
84
+ ## Training
85
+ The model was trained with the parameters:
86
 
87
+ **DataLoader**:
88
+
89
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters:
90
+ ```
91
+ {'batch_size': 64}
92
+ ```
93
+
94
+ **Loss**:
95
+
96
+ `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
97
+ ```
98
+ {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1]}
99
+ ```
100
+
101
+ Parameters of the fit()-Method:
102
+ ```
103
+ {
104
+ "epochs": 1,
105
+ "evaluation_steps": 880,
106
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
107
+ "max_grad_norm": 1,
108
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
109
+ "optimizer_params": {
110
+ "lr": 2e-05
111
+ },
112
+ "scheduler": "WarmupLinear",
113
+ "steps_per_epoch": null,
114
+ "warmup_steps": 881,
115
+ "weight_decay": 0.01
116
+ }
117
+ ```
118
 
119
 
120
  ## Full Model Architecture
121
  ```
122
  SentenceTransformer(
123
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
124
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
125
  )
126
  ```
127