File size: 23,682 Bytes
625c198
4d20fc5
 
 
57647e4
625c198
 
 
 
 
 
4d20fc5
f7ee6a6
4d20fc5
f7ee6a6
4d20fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625c198
 
4d20fc5
625c198
4d20fc5
625c198
4d20fc5
625c198
4d20fc5
 
 
 
 
 
 
 
625c198
4d20fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625c198
4d20fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625c198
 
 
 
 
f7ee6a6
625c198
4d20fc5
625c198
 
4d20fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
---
language:
- en
- multilingual
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: The WPC led the international peace movement in the decade after the Second
    World War, but its failure to speak out against the Soviet suppression of the
    1956 Hungarian uprising and the resumption of Soviet nuclear tests in 1961 marginalised
    it, and in the 1960s it was eclipsed by the newer, non-aligned peace organizations
    like the Campaign for Nuclear Disarmament.
- text: Most of the Steven Seagal movie "Under Siege "(co-starring Tommy Lee Jones)
    was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and
    open to the public.
- text: 'The Central African CFA franc (French: "franc CFA "or simply "franc ", ISO
    4217 code: XAF) is the currency of six independent states in Central Africa: Cameroon,
    Central African Republic, Chad, Republic of the Congo, Equatorial Guinea and Gabon.'
- text: Brenner conducted post-doctoral research at Brandeis University with Gregory
    Petsko and then took his first academic position at Thomas Jefferson University
    in 1996, moving to Dartmouth Medical School in 2003, where he served as Associate
    Director for Basic Sciences at Norris Cotton Cancer Center.
- text: On Friday, October 27, 2017, the Senate of Spain (Senado) voted 214 to 47
    to invoke Article 155 of the Spanish Constitution over Catalonia after the Catalan
    Parliament declared the independence.
pipeline_tag: token-classification
co2_eq_emissions:
  emissions: 452.84872035276965
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 3.118
  hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: xlm-roberta-base
model-index:
- name: SpanMarker with xlm-roberta-base on FewNERD
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: FewNERD
      type: DFKI-SLT/few-nerd
      split: test
    metrics:
    - type: f1
      value: 0.6884821229658107
      name: F1
    - type: precision
      value: 0.6890426017339362
      name: Precision
    - type: recall
      value: 0.6879225552622042
      name: Recall
---

# SpanMarker with xlm-roberta-base on FewNERD

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
- **Languages:** en, multilingual
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label                                    | Examples                                                                                                 |
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
| art-broadcastprogram                     | "The Gale Storm Show : Oh , Susanna", "Corazones", "Street Cents"                                        |
| art-film                                 | "L'Atlantide", "Shawshank Redemption", "Bosch"                                                           |
| art-music                                | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover"   |
| art-other                                | "Venus de Milo", "Aphrodite of Milos", "The Today Show"                                                  |
| art-painting                             | "Cofiwch Dryweryn", "Production/Reproduction", "Touit"                                                   |
| art-writtenart                           | "The Seven Year Itch", "Time", "Imelda de ' Lambertazzi"                                                 |
| building-airport                         | "Newark Liberty International Airport", "Luton Airport", "Sheremetyevo International Airport"            |
| building-hospital                        | "Hokkaido University Hospital", "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center" |
| building-hotel                           | "Radisson Blu Sea Plaza Hotel", "The Standard Hotel", "Flamingo Hotel"                                   |
| building-library                         | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek"                                 |
| building-other                           | "Communiplex", "Henry Ford Museum", "Alpha Recording Studios"                                            |
| building-restaurant                      | "Fatburger", "Carnegie Deli", "Trumbull"                                                                 |
| building-sportsfacility                  | "Boston Garden", "Glenn Warner Soccer Facility", "Sports Center"                                         |
| building-theater                         | "Pittsburgh Civic Light Opera", "National Paris Opera", "Sanders Theatre"                                |
| event-attack/battle/war/militaryconflict | "Jurist", "Easter Offensive", "Vietnam War"                                                              |
| event-disaster                           | "1693 Sicily earthquake", "1990s North Korean famine", "the 1912 North Mount Lyell Disaster"             |
| event-election                           | "March 1898 elections", "Elections to the European Parliament", "1982 Mitcham and Morden by-election"    |
| event-other                              | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement"                  |
| event-protest                            | "Russian Revolution", "French Revolution", "Iranian Constitutional Revolution"                           |
| event-sportsevent                        | "World Cup", "Stanley Cup", "National Champions"                                                         |
| location-GPE                             | "Mediterranean Basin", "Croatian", "the Republic of Croatia"                                             |
| location-bodiesofwater                   | "Norfolk coast", "Atatürk Dam Lake", "Arthur Kill"                                                       |
| location-island                          | "Laccadives", "Staten Island", "new Samsat district"                                                     |
| location-mountain                        | "Ruweisat Ridge", "Miteirya Ridge", "Salamander Glacier"                                                 |
| location-other                           | "Victoria line", "Northern City Line", "Cartuther"                                                       |
| location-park                            | "Painted Desert Community Complex Historic District", "Shenandoah National Park", "Gramercy Park"        |
| location-road/railway/highway/transit    | "Newark-Elizabeth Rail Link", "NJT", "Friern Barnet Road"                                                |
| organization-company                     | "Church 's Chicken", "Texas Chicken", "Dixy Chicken"                                                     |
| organization-education                   | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College"           |
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court"                                                      |
| organization-media/newspaper             | "TimeOut Melbourne", "Al Jazeera", "Clash"                                                               |
| organization-other                       | "IAEA", "4th Army", "Defence Sector C"                                                                   |
| organization-politicalparty              | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō"                                                              |
| organization-religion                    | "UPCUSA", "Jewish", "Christian"                                                                          |
| organization-showorganization            | "Bochumer Symphoniker", "Mr. Mister", "Lizzy"                                                            |
| organization-sportsleague                | "First Division", "NHL", "China League One"                                                              |
| organization-sportsteam                  | "Tottenham", "Arsenal", "Luc Alphand Aventures"                                                          |
| other-astronomything                     | "Algol", "Zodiac", "`` Caput Larvae ''"                                                                  |
| other-award                              | "Grand Commander of the Order of the Niger", "Order of the Republic of Guinea and Nigeria", "GCON"       |
| other-biologything                       | "Amphiphysin", "BAR", "N-terminal lipid"                                                                 |
| other-chemicalthing                      | "carbon dioxide", "sulfur", "uranium"                                                                    |
| other-currency                           | "$", "lac crore", "Travancore Rupee"                                                                     |
| other-disease                            | "hypothyroidism", "bladder cancer", "French Dysentery Epidemic of 1779"                                  |
| other-educationaldegree                  | "Master", "Bachelor", "BSc ( Hons ) in physics"                                                          |
| other-god                                | "El", "Fujin", "Raijin"                                                                                  |
| other-language                           | "Breton-speaking", "Latin", "English"                                                                    |
| other-law                                | "United States Freedom Support Act", "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA"     |
| other-livingthing                        | "insects", "patchouli", "monkeys"                                                                        |
| other-medical                            | "amitriptyline", "pediatrician", "Pediatrics"                                                            |
| person-actor                             | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss"                                                       |
| person-artist/author                     | "George Axelrod", "Hicks", "Gaetano Donizett"                                                            |
| person-athlete                           | "Jaguar", "Neville", "Tozawa"                                                                            |
| person-director                          | "Richard Quine", "Frank Darabont", "Bob Swaim"                                                           |
| person-other                             | "Campbell", "Richard Benson", "Holden"                                                                   |
| person-politician                        | "Rivière", "Emeric", "William"                                                                           |
| person-scholar                           | "Stedman", "Wurdack", "Stalmine"                                                                         |
| person-soldier                           | "Joachim Ziegler", "Krukenberg", "Helmuth Weidling"                                                      |
| product-airplane                         | "EC135T2 CPDS", "Spey-equipped FGR.2s", "Luton"                                                          |
| product-car                              | "Phantom", "Corvettes - GT1 C6R", "100EX"                                                                |
| product-food                             | "V. labrusca", "red grape", "yakiniku"                                                                   |
| product-game                             | "Hardcore RPG", "Airforce Delta", "Splinter Cell"                                                        |
| product-other                            | "PDP-1", "Fairbottom Bobs", "X11"                                                                        |
| product-ship                             | "Essex", "Congress", "HMS `` Chinkara ''"                                                                |
| product-software                         | "Wikipedia", "Apdf", "AmiPDF"                                                                            |
| product-train                            | "55022", "Royal Scots Grey", "High Speed Trains"                                                         |
| product-weapon                           | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel"                                                     |

## Evaluation

### Metrics
| Label                                    | Precision | Recall | F1     |
|:-----------------------------------------|:----------|:-------|:-------|
| **all**                                  | 0.6890    | 0.6879 | 0.6885 |
| art-broadcastprogram                     | 0.6       | 0.5771 | 0.5883 |
| art-film                                 | 0.7384    | 0.7453 | 0.7419 |
| art-music                                | 0.7930    | 0.7221 | 0.7558 |
| art-other                                | 0.4245    | 0.2900 | 0.3446 |
| art-painting                             | 0.5476    | 0.4035 | 0.4646 |
| art-writtenart                           | 0.6400    | 0.6539 | 0.6469 |
| building-airport                         | 0.8219    | 0.8242 | 0.8230 |
| building-hospital                        | 0.7024    | 0.8104 | 0.7526 |
| building-hotel                           | 0.7175    | 0.7283 | 0.7228 |
| building-library                         | 0.74      | 0.7296 | 0.7348 |
| building-other                           | 0.5828    | 0.5910 | 0.5869 |
| building-restaurant                      | 0.5525    | 0.5216 | 0.5366 |
| building-sportsfacility                  | 0.6187    | 0.7881 | 0.6932 |
| building-theater                         | 0.7067    | 0.7626 | 0.7336 |
| event-attack/battle/war/militaryconflict | 0.7544    | 0.7468 | 0.7506 |
| event-disaster                           | 0.5882    | 0.5314 | 0.5584 |
| event-election                           | 0.4167    | 0.2198 | 0.2878 |
| event-other                              | 0.4902    | 0.4042 | 0.4430 |
| event-protest                            | 0.3643    | 0.2831 | 0.3186 |
| event-sportsevent                        | 0.6125    | 0.6239 | 0.6182 |
| location-GPE                             | 0.8102    | 0.8553 | 0.8321 |
| location-bodiesofwater                   | 0.6888    | 0.7725 | 0.7282 |
| location-island                          | 0.7285    | 0.6440 | 0.6836 |
| location-mountain                        | 0.7129    | 0.7327 | 0.7227 |
| location-other                           | 0.4376    | 0.2560 | 0.3231 |
| location-park                            | 0.6991    | 0.6900 | 0.6945 |
| location-road/railway/highway/transit    | 0.6936    | 0.7259 | 0.7094 |
| organization-company                     | 0.6921    | 0.6912 | 0.6917 |
| organization-education                   | 0.7838    | 0.7963 | 0.7900 |
| organization-government/governmentagency | 0.5363    | 0.4394 | 0.4831 |
| organization-media/newspaper             | 0.6215    | 0.6705 | 0.6451 |
| organization-other                       | 0.5766    | 0.5157 | 0.5444 |
| organization-politicalparty              | 0.6449    | 0.7324 | 0.6859 |
| organization-religion                    | 0.5139    | 0.6057 | 0.5560 |
| organization-showorganization            | 0.5620    | 0.5657 | 0.5638 |
| organization-sportsleague                | 0.6348    | 0.6542 | 0.6443 |
| organization-sportsteam                  | 0.7138    | 0.7566 | 0.7346 |
| other-astronomything                     | 0.7418    | 0.7625 | 0.752  |
| other-award                              | 0.7291    | 0.6736 | 0.7002 |
| other-biologything                       | 0.6735    | 0.6275 | 0.6497 |
| other-chemicalthing                      | 0.6025    | 0.5651 | 0.5832 |
| other-currency                           | 0.6843    | 0.8411 | 0.7546 |
| other-disease                            | 0.6284    | 0.7089 | 0.6662 |
| other-educationaldegree                  | 0.5856    | 0.6033 | 0.5943 |
| other-god                                | 0.6089    | 0.6913 | 0.6475 |
| other-language                           | 0.6608    | 0.7968 | 0.7225 |
| other-law                                | 0.6693    | 0.7246 | 0.6958 |
| other-livingthing                        | 0.6070    | 0.6014 | 0.6042 |
| other-medical                            | 0.5062    | 0.5113 | 0.5088 |
| person-actor                             | 0.8274    | 0.7673 | 0.7962 |
| person-artist/author                     | 0.6761    | 0.7294 | 0.7018 |
| person-athlete                           | 0.8132    | 0.8347 | 0.8238 |
| person-director                          | 0.675     | 0.6823 | 0.6786 |
| person-other                             | 0.6472    | 0.6388 | 0.6429 |
| person-politician                        | 0.6621    | 0.6593 | 0.6607 |
| person-scholar                           | 0.5181    | 0.5007 | 0.5092 |
| person-soldier                           | 0.4750    | 0.5131 | 0.4933 |
| product-airplane                         | 0.6230    | 0.6717 | 0.6464 |
| product-car                              | 0.7293    | 0.7176 | 0.7234 |
| product-food                             | 0.5758    | 0.5185 | 0.5457 |
| product-game                             | 0.7049    | 0.6734 | 0.6888 |
| product-other                            | 0.5477    | 0.4067 | 0.4668 |
| product-ship                             | 0.6247    | 0.6395 | 0.6320 |
| product-software                         | 0.6497    | 0.6760 | 0.6626 |
| product-train                            | 0.5505    | 0.5732 | 0.5616 |
| product-weapon                           | 0.6004    | 0.4744 | 0.5300 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super")
# Run inference
entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 24.4945 | 267 |
| Entities per sentence | 0   | 2.5832  | 88  |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training Results
| Epoch  | Step  | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.2947 | 3000  | 0.0318          | 0.6058               | 0.5990            | 0.6024        | 0.9020              |
| 0.5893 | 6000  | 0.0266          | 0.6556               | 0.6679            | 0.6617        | 0.9173              |
| 0.8840 | 9000  | 0.0250          | 0.6691               | 0.6804            | 0.6747        | 0.9206              |
| 1.1787 | 12000 | 0.0239          | 0.6865               | 0.6761            | 0.6813        | 0.9212              |
| 1.4733 | 15000 | 0.0234          | 0.6872               | 0.6812            | 0.6842        | 0.9226              |
| 1.7680 | 18000 | 0.0231          | 0.6919               | 0.6821            | 0.6870        | 0.9227              |
| 2.0627 | 21000 | 0.0231          | 0.6909               | 0.6871            | 0.6890        | 0.9233              |
| 2.3573 | 24000 | 0.0231          | 0.6903               | 0.6875            | 0.6889        | 0.9238              |
| 2.6520 | 27000 | 0.0229          | 0.6918               | 0.6926            | 0.6922        | 0.9242              |
| 2.9467 | 30000 | 0.0228          | 0.6927               | 0.6930            | 0.6928        | 0.9243              |

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.453 kg of CO2
- **Hours Used**: 3.118 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.4.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.2

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->