metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:CosineSimilarityLoss
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A man is spitting.
sentences:
- A man seasoning quail.
- A brown horse in a green field.
- A woman is playing the guitar.
- source_sentence: A woman is reading.
sentences:
- A woman is slicing carrot.
- The man is hiking in the woods.
- A man is singing and playing a guitar.
- source_sentence: A woman is dancing.
sentences:
- A woman is dancing in railway station.
- A doctor prescribes a medicine.
- The man is riding a horse.
- source_sentence: Women are running.
sentences:
- Women are running.
- A woman is applying eye shadow.
- A woman and man are riding in a car.
- source_sentence: A cat is on a robot.
sentences:
- A cat is pouncing on a trampoline.
- A woman is applying eye shadow.
- A woman and man are riding in a car.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 0.11798947049821952
energy_consumed: 0.0003035473717609365
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.002
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7327950331192871
name: Pearson Cosine
- type: spearman_cosine
value: 0.733720742976967
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5141829243804352
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5088476055041519
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5143122485153392
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5094438567737941
name: Spearman Euclidean
- type: pearson_dot
value: 0.5691313208318369
name: Pearson Dot
- type: spearman_dot
value: 0.6686075432867175
name: Spearman Dot
- type: pearson_max
value: 0.7327950331192871
name: Pearson Max
- type: spearman_max
value: 0.733720742976967
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.6515536111902664
name: Pearson Cosine
- type: spearman_cosine
value: 0.6357551120651417
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4104283118123022
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4057805136887886
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4116066558734167
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.40663312273612934
name: Spearman Euclidean
- type: pearson_dot
value: 0.4717437134789646
name: Pearson Dot
- type: spearman_dot
value: 0.5536656048436931
name: Spearman Dot
- type: pearson_max
value: 0.6515536111902664
name: Pearson Max
- type: spearman_max
value: 0.6357551120651417
name: Spearman Max
SentenceTransformer
This is a sentence-transformers model trained on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: None tokens
- Output Dimensionality: 512 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): BoW()
(1): Dense({'in_features': 25000, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/wikipedia-tf-idf-bow")
# Run inference
sentences = [
'A cat is on a robot.',
'A cat is pouncing on a trampoline.',
'A woman is applying eye shadow.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7328 |
spearman_cosine | 0.7337 |
pearson_manhattan | 0.5142 |
spearman_manhattan | 0.5088 |
pearson_euclidean | 0.5143 |
spearman_euclidean | 0.5094 |
pearson_dot | 0.5691 |
spearman_dot | 0.6686 |
pearson_max | 0.7328 |
spearman_max | 0.7337 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6516 |
spearman_cosine | 0.6358 |
pearson_manhattan | 0.4104 |
spearman_manhattan | 0.4058 |
pearson_euclidean | 0.4116 |
spearman_euclidean | 0.4066 |
pearson_dot | 0.4717 |
spearman_dot | 0.5537 |
pearson_max | 0.6516 |
spearman_max | 0.6358 |
Training Details
Training Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at d999f12
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 16 characters
- mean: 31.92 characters
- max: 113 characters
- min: 16 characters
- mean: 31.51 characters
- max: 94 characters
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.
An air plane is taking off.
1.0
A man is playing a large flute.
A man is playing a flute.
0.76
A man is spreading shreded cheese on a pizza.
A man is spreading shredded cheese on an uncooked pizza.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at d999f12
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 characters
- mean: 57.37 characters
- max: 144 characters
- min: 17 characters
- mean: 56.84 characters
- max: 141 characters
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.5556 | 100 | 0.0725 | 0.0436 | 0.7337 | - |
1.0 | 180 | - | - | - | 0.6358 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.000 kWh
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.002 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}