tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
ef21bc5 verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - loss:CosineSimilarityLoss
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: A man is spitting.
    sentences:
      - A man seasoning quail.
      - A brown horse in a green field.
      - A woman is playing the guitar.
  - source_sentence: A woman is reading.
    sentences:
      - A woman is slicing carrot.
      - The man is hiking in the woods.
      - A man is singing and playing a guitar.
  - source_sentence: A woman is dancing.
    sentences:
      - A woman is dancing in railway station.
      - A doctor prescribes a medicine.
      - The man is riding a horse.
  - source_sentence: Women are running.
    sentences:
      - Women are running.
      - A woman is applying eye shadow.
      - A woman and man are riding in a car.
  - source_sentence: A cat is on a robot.
    sentences:
      - A cat is pouncing on a trampoline.
      - A woman is applying eye shadow.
      - A woman and man are riding in a car.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 0.11798947049821952
  energy_consumed: 0.0003035473717609365
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.002
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.7327950331192871
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.733720742976967
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.5141829243804352
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.5088476055041519
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.5143122485153392
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.5094438567737941
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5691313208318369
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6686075432867175
            name: Spearman Dot
          - type: pearson_max
            value: 0.7327950331192871
            name: Pearson Max
          - type: spearman_max
            value: 0.733720742976967
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.6515536111902664
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6357551120651417
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.4104283118123022
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4057805136887886
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.4116066558734167
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.40663312273612934
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4717437134789646
            name: Pearson Dot
          - type: spearman_dot
            value: 0.5536656048436931
            name: Spearman Dot
          - type: pearson_max
            value: 0.6515536111902664
            name: Pearson Max
          - type: spearman_max
            value: 0.6357551120651417
            name: Spearman Max

SentenceTransformer

This is a sentence-transformers model trained on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: None tokens
  • Output Dimensionality: 512 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): BoW()
  (1): Dense({'in_features': 25000, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/wikipedia-tf-idf-bow")
# Run inference
sentences = [
    'A cat is on a robot.',
    'A cat is pouncing on a trampoline.',
    'A woman is applying eye shadow.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7328
spearman_cosine 0.7337
pearson_manhattan 0.5142
spearman_manhattan 0.5088
pearson_euclidean 0.5143
spearman_euclidean 0.5094
pearson_dot 0.5691
spearman_dot 0.6686
pearson_max 0.7328
spearman_max 0.7337

Semantic Similarity

Metric Value
pearson_cosine 0.6516
spearman_cosine 0.6358
pearson_manhattan 0.4104
spearman_manhattan 0.4058
pearson_euclidean 0.4116
spearman_euclidean 0.4066
pearson_dot 0.4717
spearman_dot 0.5537
pearson_max 0.6516
spearman_max 0.6358

Training Details

Training Dataset

sentence-transformers/stsb

  • Dataset: sentence-transformers/stsb at d999f12
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 16 characters
    • mean: 31.92 characters
    • max: 113 characters
    • min: 16 characters
    • mean: 31.51 characters
    • max: 94 characters
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A plane is taking off. An air plane is taking off. 1.0
    A man is playing a large flute. A man is playing a flute. 0.76
    A man is spreading shreded cheese on a pizza. A man is spreading shredded cheese on an uncooked pizza. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

sentence-transformers/stsb

  • Dataset: sentence-transformers/stsb at d999f12
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 12 characters
    • mean: 57.37 characters
    • max: 144 characters
    • min: 17 characters
    • mean: 56.84 characters
    • max: 141 characters
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: False
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev_spearman_cosine sts-test_spearman_cosine
0.5556 100 0.0725 0.0436 0.7337 -
1.0 180 - - - 0.6358

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.000 kWh
  • Carbon Emitted: 0.000 kg of CO2
  • Hours Used: 0.002 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.0.0.dev0
  • Transformers: 4.41.0.dev0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}