---
base_model: sentence-transformers/paraphrase-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:76309
- loss:CoSENTLoss
widget:
- source_sentence: cordoba capital barcelona
sentences:
- mendoza capital barcelona
- buenos aires chascomus rafael castillo int russo
- buenos aires moreno la reja miero
- source_sentence: cordoba capital cdad de tampa
sentences:
- cordoba general lopez francfort
- buenos aires juarez celman ciudad madero blanco encalada
- capital cdad de tampa
- source_sentence: buenos aires general pueyrredon batan villa gustava
sentences:
- buenos aires moreno la reja miero
- buenos aires general pueyrredon villa libertad villa gustava
- buenos aires freyre los sauces
- source_sentence: buenos aires general pueyrredon mar del plata don arturo peralta
ramos
sentences:
- mendoza la matanza rafael castillo japon
- buenos aires maria susana cuartel v dr luis agote
- buenos aires general pueyrredon san lorenzo don arturo peralta ramos
- source_sentence: buenos aires general san martin ciudad jardin el libertador calle
172
sentences:
- santa fe hernando del ceibal
- buenos aires general san martin san sebastian calle 172
- buenos aires la plata calle 159
---
# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomasravel/modelo_finetuneado28")
# Run inference
sentences = [
'buenos aires general san martin ciudad jardin el libertador calle 172',
'buenos aires general san martin san sebastian calle 172',
'santa fe hernando del ceibal',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 76,309 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
buenos aires general pueyrredon san eduardo del mar calle 57
| buenos aires general pueyrredon calle 57
| 1.0
|
| buenos aires general pueyrredon mar del plata garcia lorca
| buenos aires trancas mar del plata garcia lorca
| 0.6
|
| buenos aires bahia blanca gorriones
| buenos aires bahia blanca calle 50
| 0.5
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters