File size: 7,912 Bytes
0a4aac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Setup & Installation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting requirements.txt\n"
     ]
    }
   ],
   "source": [
    "%%writefile requirements.txt\n",
    "git+https://github.com/openai/whisper.git@8cf36f3508c9acd341a45eb2364239a3d81458b9"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -r requirements.txt --upgrade"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Test model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-09-23 20:32:18--  https://cdn-media.huggingface.co/speech_samples/sample1.flac\n",
      "Resolving cdn-media.huggingface.co (cdn-media.huggingface.co)... 13.32.151.62, 13.32.151.23, 13.32.151.60, ...\n",
      "Connecting to cdn-media.huggingface.co (cdn-media.huggingface.co)|13.32.151.62|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 282378 (276K) [audio/flac]\n",
      "Saving to: β€˜sample1.flac’\n",
      "\n",
      "sample1.flac        100%[===================>] 275.76K  --.-KB/s    in 0.003s  \n",
      "\n",
      "2022-09-23 20:32:18 (78.7 MB/s) - β€˜sample1.flac’ saved [282378/282378]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!wget https://cdn-media.huggingface.co/speech_samples/sample1.flac"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2.87G/2.87G [01:11<00:00, 42.9MiB/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected language: english\n",
      " going along slushy country roads and speaking to damp audiences in drafty school rooms day after day for a fortnight. he'll have to put in an appearance at some place of worship on sunday morning and he can come to us immediately afterwards.\n"
     ]
    }
   ],
   "source": [
    "import whisper\n",
    "\n",
    "model = whisper.load_model(\"large\")\n",
    "result = model.transcribe(\"sample1.flac\")\n",
    "print(result[\"text\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Create Custom Handler for Inference Endpoints\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting handler.py\n"
     ]
    }
   ],
   "source": [
    "%%writefile handler.py\n",
    "from typing import  Dict\n",
    "from transformers.pipelines.audio_utils import ffmpeg_read\n",
    "import whisper\n",
    "import torch\n",
    "\n",
    "SAMPLE_RATE = 16000\n",
    "\n",
    "\n",
    "\n",
    "class EndpointHandler():\n",
    "    def __init__(self, path=\"\"):\n",
    "        # load the model\n",
    "        self.model = whisper.load_model(\"medium\")\n",
    "\n",
    "\n",
    "    def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:\n",
    "        \"\"\"\n",
    "        Args:\n",
    "            data (:obj:):\n",
    "                includes the deserialized audio file as bytes\n",
    "        Return:\n",
    "            A :obj:`dict`:. base64 encoded image\n",
    "        \"\"\"\n",
    "        # process input\n",
    "        inputs = data.pop(\"inputs\", data)\n",
    "        audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)\n",
    "        audio_tensor= torch.from_numpy(audio_nparray)\n",
    "        \n",
    "        # run inference pipeline\n",
    "        result = self.model.transcribe(audio_nparray)\n",
    "\n",
    "        # postprocess the prediction\n",
    "        return {\"text\": result[\"text\"]}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "test custom pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from handler import EndpointHandler\n",
    "\n",
    "# init handler\n",
    "my_handler = EndpointHandler(path=\".\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ubuntu/endpoints/openai-whisper-endpoint/handler.py:27: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at  ../torch/csrc/utils/tensor_numpy.cpp:178.)\n",
      "  audio_tensor= torch.from_numpy(audio_nparray)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected language: english\n"
     ]
    }
   ],
   "source": [
    "import base64\n",
    "from PIL import Image\n",
    "from io import BytesIO\n",
    "import json\n",
    "\n",
    "# file reader\n",
    "with open(\"sample1.flac\", \"rb\") as f:\n",
    "  request = {\"inputs\": f.read()}\n",
    "\n",
    "\n",
    "# test the handler\n",
    "pred = my_handler(request)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'transcription': \" going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards.\"}"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pred"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'{\"transcription\": \" going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He\\'ll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards.\"}'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import json\n",
    "\n",
    "json.dumps({'transcription': \" going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards.\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.13 ('dev': conda)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}