File size: 1,985 Bytes
7296ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a22a2
7296ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: gemma
base_model: vidore/colpaligemma-3b-pt-448-base
tags:
- colpali
- generated_from_trainer
model-index:
- name: finetune_colpali_v1_2-vdsid_french-4bit
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune_colpali_v1_2-vdsid_french-4bit

This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on an [vidore/vdsid_french](https://huggingface.co/datasets/vidore/vdsid_french).
It achieves the following results on the evaluation set:
- Loss: 0.0316
- Model Preparation Time: 0.0121

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Model Preparation Time |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|
| No log        | 0.0034 | 1    | 0.0489          | 0.0121                 |
| 0.0171        | 0.3404 | 100  | 0.0215          | 0.0121                 |
| 0.01          | 0.6809 | 200  | 0.0301          | 0.0121                 |
| 0.009         | 1.0213 | 300  | 0.0318          | 0.0121                 |
| 0.012         | 1.3617 | 400  | 0.0319          | 0.0121                 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1