Add definition class
Browse files
uniformer_finetune/__init__.py
ADDED
File without changes
|
uniformer_finetune/uniformer_finetune_config.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class UniformerXXSFinetuneConfig(PretrainedConfig):
|
4 |
+
model_type = "uniformer_finetuned"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
pretrained: str = 'uniformer_xxs_400',
|
9 |
+
out_class: int = 20,
|
10 |
+
**kwargs
|
11 |
+
):
|
12 |
+
self.pretrained = pretrained
|
13 |
+
self.out_class = out_class
|
14 |
+
super().__init__(**kwargs)
|
15 |
+
|
uniformer_finetune/uniformer_finetune_model.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
from uniformer_finetune_config import UniformerXXSFinetuneConfig
|
3 |
+
from uniformer_xs import UniformerXXSFinetune
|
4 |
+
|
5 |
+
class UniformerXXSFinetuneModel(PreTrainedModel):
|
6 |
+
config_class = UniformerXXSFinetuneConfig
|
7 |
+
|
8 |
+
def __init__(self, config):
|
9 |
+
super().__init__(config)
|
10 |
+
self.model = UniformerXXSFinetune(
|
11 |
+
out_class=config.out_class
|
12 |
+
)
|
13 |
+
def forward(self, tensor):
|
14 |
+
return self.model.forward(tensor)
|
uniformer_finetune/uniformer_xs.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# All rights reserved.
|
2 |
+
from math import ceil, sqrt
|
3 |
+
from collections import OrderedDict
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from functools import partial
|
8 |
+
from timm.models.vision_transformer import _cfg
|
9 |
+
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
|
10 |
+
# from .build import MODEL_REGISTRY
|
11 |
+
import os
|
12 |
+
|
13 |
+
import slowfast.utils.logging as logging
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
model_path = 'path_to_models'
|
18 |
+
model_path = {
|
19 |
+
'uniformer_xxs_128_in1k': os.path.join(model_path, 'uniformer_xxs_128_in1k.pth'),
|
20 |
+
'uniformer_xxs_160_in1k': os.path.join(model_path, 'uniformer_xxs_160_in1k.pth'),
|
21 |
+
'uniformer_xxs_192_in1k': os.path.join(model_path, 'uniformer_xxs_192_in1k.pth'),
|
22 |
+
'uniformer_xxs_224_in1k': os.path.join(model_path, 'uniformer_xxs_224_in1k.pth'),
|
23 |
+
'uniformer_xs_192_in1k': os.path.join(model_path, 'uniformer_xs_192_in1k.pth'),
|
24 |
+
'uniformer_xs_224_in1k': os.path.join(model_path, 'uniformer_xs_224_in1k.pth'),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def conv_3xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
|
29 |
+
return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups)
|
30 |
+
|
31 |
+
def conv_1xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
|
32 |
+
return nn.Conv3d(inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups)
|
33 |
+
|
34 |
+
def conv_3xnxn_std(inp, oup, kernel_size=3, stride=3, groups=1):
|
35 |
+
return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (1, stride, stride), (1, 0, 0), groups=groups)
|
36 |
+
|
37 |
+
def conv_1x1x1(inp, oup, groups=1):
|
38 |
+
return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups)
|
39 |
+
|
40 |
+
def conv_3x3x3(inp, oup, groups=1):
|
41 |
+
return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups)
|
42 |
+
|
43 |
+
def conv_5x5x5(inp, oup, groups=1):
|
44 |
+
return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups)
|
45 |
+
|
46 |
+
def bn_3d(dim):
|
47 |
+
return nn.BatchNorm3d(dim)
|
48 |
+
|
49 |
+
|
50 |
+
# code is from https://github.com/YifanXu74/Evo-ViT
|
51 |
+
def easy_gather(x, indices):
|
52 |
+
# x => B x N x C
|
53 |
+
# indices => B x N
|
54 |
+
B, N, C = x.shape
|
55 |
+
N_new = indices.shape[1]
|
56 |
+
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
|
57 |
+
indices = indices + offset
|
58 |
+
# only select the informative tokens
|
59 |
+
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C)
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
# code is from https://github.com/YifanXu74/Evo-ViT
|
64 |
+
def merge_tokens(x_drop, score):
|
65 |
+
# x_drop => B x N_drop
|
66 |
+
# score => B x N_drop
|
67 |
+
weight = score / torch.sum(score, dim=1, keepdim=True)
|
68 |
+
x_drop = weight.unsqueeze(-1) * x_drop
|
69 |
+
return torch.sum(x_drop, dim=1, keepdim=True)
|
70 |
+
|
71 |
+
|
72 |
+
class Mlp(nn.Module):
|
73 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
74 |
+
super().__init__()
|
75 |
+
out_features = out_features or in_features
|
76 |
+
hidden_features = hidden_features or in_features
|
77 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
78 |
+
self.act = act_layer()
|
79 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
80 |
+
self.drop = nn.Dropout(drop)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
x = self.fc1(x)
|
84 |
+
x = self.act(x)
|
85 |
+
x = self.drop(x)
|
86 |
+
x = self.fc2(x)
|
87 |
+
x = self.drop(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class Attention(nn.Module):
|
92 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1):
|
93 |
+
super().__init__()
|
94 |
+
self.num_heads = num_heads
|
95 |
+
head_dim = dim // num_heads
|
96 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
97 |
+
self.scale = qk_scale or head_dim ** -0.5
|
98 |
+
|
99 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
100 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
101 |
+
self.proj = nn.Linear(dim, dim)
|
102 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
103 |
+
# updating weight for global score
|
104 |
+
self.trade_off = trade_off
|
105 |
+
|
106 |
+
def forward(self, x, global_attn):
|
107 |
+
B, N, C = x.shape
|
108 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
109 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
110 |
+
|
111 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
112 |
+
attn = attn.softmax(dim=-1)
|
113 |
+
|
114 |
+
# update global score
|
115 |
+
tradeoff = self.trade_off
|
116 |
+
if isinstance(global_attn, int):
|
117 |
+
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
|
118 |
+
elif global_attn.shape[1] == N - 1:
|
119 |
+
# no additional token and no pruning, update all global scores
|
120 |
+
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
|
121 |
+
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn
|
122 |
+
else:
|
123 |
+
# only update the informative tokens
|
124 |
+
# the first one is class token
|
125 |
+
# the last one is rrepresentative token
|
126 |
+
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1)
|
127 |
+
if self.training:
|
128 |
+
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
|
129 |
+
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1)
|
130 |
+
else:
|
131 |
+
# no use torch.cat() for fast inference
|
132 |
+
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
|
133 |
+
|
134 |
+
attn = self.attn_drop(attn)
|
135 |
+
|
136 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
137 |
+
x = self.proj(x)
|
138 |
+
x = self.proj_drop(x)
|
139 |
+
return x, global_attn
|
140 |
+
|
141 |
+
|
142 |
+
class CMlp(nn.Module):
|
143 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
144 |
+
super().__init__()
|
145 |
+
out_features = out_features or in_features
|
146 |
+
hidden_features = hidden_features or in_features
|
147 |
+
self.fc1 = conv_1x1x1(in_features, hidden_features)
|
148 |
+
self.act = act_layer()
|
149 |
+
self.fc2 = conv_1x1x1(hidden_features, out_features)
|
150 |
+
self.drop = nn.Dropout(drop)
|
151 |
+
|
152 |
+
def forward(self, x):
|
153 |
+
x = self.fc1(x)
|
154 |
+
x = self.act(x)
|
155 |
+
x = self.drop(x)
|
156 |
+
x = self.fc2(x)
|
157 |
+
x = self.drop(x)
|
158 |
+
return x
|
159 |
+
|
160 |
+
|
161 |
+
class CBlock(nn.Module):
|
162 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
163 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
164 |
+
super().__init__()
|
165 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
166 |
+
self.norm1 = bn_3d(dim)
|
167 |
+
self.conv1 = conv_1x1x1(dim, dim, 1)
|
168 |
+
self.conv2 = conv_1x1x1(dim, dim, 1)
|
169 |
+
self.attn = conv_5x5x5(dim, dim, groups=dim)
|
170 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
171 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
172 |
+
self.norm2 = bn_3d(dim)
|
173 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
174 |
+
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
x = x + self.pos_embed(x)
|
178 |
+
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
|
179 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
180 |
+
return x
|
181 |
+
|
182 |
+
|
183 |
+
class EvoSABlock(nn.Module):
|
184 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
185 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1,
|
186 |
+
trade_off=0, downsample=False):
|
187 |
+
super().__init__()
|
188 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
189 |
+
self.norm1 = norm_layer(dim)
|
190 |
+
self.attn = Attention(
|
191 |
+
dim,
|
192 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
193 |
+
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off)
|
194 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
195 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
196 |
+
self.norm2 = norm_layer(dim)
|
197 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
198 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
199 |
+
self.prune_ratio = prune_ratio
|
200 |
+
self.downsample = downsample
|
201 |
+
# if downsample:
|
202 |
+
self.avgpool = nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
203 |
+
|
204 |
+
def forward(self, cls_token, x, global_attn, token_indices):
|
205 |
+
x = x + self.pos_embed(x)
|
206 |
+
B, C, T, H, W = x.shape
|
207 |
+
x = x.flatten(2).transpose(1, 2)
|
208 |
+
|
209 |
+
if self.prune_ratio == 1:
|
210 |
+
x = torch.cat([cls_token, x], dim=1)
|
211 |
+
x , global_attn = self.attn(self.norm1(x), global_attn)
|
212 |
+
x = x + self.drop_path(x)
|
213 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
214 |
+
cls_token, x = x[:, :1], x[:, 1:]
|
215 |
+
x = x.transpose(1, 2).reshape(B, C, T, H, W)
|
216 |
+
return cls_token, x, global_attn, token_indices
|
217 |
+
else:
|
218 |
+
# global global_attn, token_indices
|
219 |
+
# calculate the number of informative tokens
|
220 |
+
N = x.shape[1]
|
221 |
+
N_ = int(N * self.prune_ratio)
|
222 |
+
# sort global attention
|
223 |
+
indices = torch.argsort(global_attn, dim=1, descending=True)
|
224 |
+
|
225 |
+
# concatenate x, global attention and token indices => x_ga_ti
|
226 |
+
# rearrange the tensor according to new indices
|
227 |
+
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
|
228 |
+
x_ga_ti = easy_gather(x_ga_ti, indices)
|
229 |
+
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
|
230 |
+
|
231 |
+
# informative tokens
|
232 |
+
x_info = x_sorted[:, :N_]
|
233 |
+
# merge dropped tokens
|
234 |
+
x_drop = x_sorted[:, N_:]
|
235 |
+
score = global_attn[:, N_:]
|
236 |
+
# B x N_drop x C => B x 1 x C
|
237 |
+
rep_token = merge_tokens(x_drop, score)
|
238 |
+
# concatenate new tokens
|
239 |
+
x = torch.cat((cls_token, x_info, rep_token), dim=1)
|
240 |
+
|
241 |
+
# slow update
|
242 |
+
fast_update = 0
|
243 |
+
tmp_x, global_attn = self.attn(self.norm1(x), global_attn)
|
244 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
245 |
+
x = x + self.drop_path(tmp_x)
|
246 |
+
tmp_x = self.mlp(self.norm2(x))
|
247 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
248 |
+
x = x + self.drop_path(tmp_x)
|
249 |
+
# fast update
|
250 |
+
x_drop = x_drop + fast_update.expand(-1, N - N_, -1)
|
251 |
+
|
252 |
+
cls_token, x = x[:, :1, :], x[:, 1:-1, :]
|
253 |
+
if self.training:
|
254 |
+
x_sorted = torch.cat((x, x_drop), dim=1)
|
255 |
+
else:
|
256 |
+
x_sorted[:, N_:] = x_drop
|
257 |
+
x_sorted[:, :N_] = x
|
258 |
+
|
259 |
+
# recover token
|
260 |
+
# scale for normalization
|
261 |
+
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
|
262 |
+
# recover order
|
263 |
+
indices = torch.argsort(token_indices, dim=1)
|
264 |
+
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
|
265 |
+
x_ga_ti = easy_gather(x_ga_ti, indices)
|
266 |
+
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
|
267 |
+
x_patch = x_patch.transpose(1, 2).reshape(B, C, T, H, W)
|
268 |
+
|
269 |
+
if self.downsample:
|
270 |
+
# downsample global attention
|
271 |
+
global_attn = global_attn.reshape(B, 1, T, H, W)
|
272 |
+
global_attn = self.avgpool(global_attn).view(B, -1)
|
273 |
+
# normalize global attention
|
274 |
+
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
|
275 |
+
scale = old_global_scale / new_global_scale
|
276 |
+
global_attn = global_attn * scale
|
277 |
+
|
278 |
+
return cls_token, x_patch, global_attn, token_indices
|
279 |
+
|
280 |
+
|
281 |
+
class SABlock(nn.Module):
|
282 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
283 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
284 |
+
super().__init__()
|
285 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
286 |
+
self.norm1 = norm_layer(dim)
|
287 |
+
self.attn = Attention(
|
288 |
+
dim,
|
289 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
290 |
+
attn_drop=attn_drop, proj_drop=drop)
|
291 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
292 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
293 |
+
self.norm2 = norm_layer(dim)
|
294 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
295 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
296 |
+
|
297 |
+
def forward(self, x, global_attn):
|
298 |
+
x = x + self.pos_embed(x)
|
299 |
+
B, C, T, H, W = x.shape
|
300 |
+
x = x.flatten(2).transpose(1, 2)
|
301 |
+
x , global_attn = self.attn(self.norm1(x),global_attn)
|
302 |
+
x = x + self.drop_path(x)
|
303 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
304 |
+
x = x.transpose(1, 2).reshape(B, C, T, H, W)
|
305 |
+
return x, global_attn
|
306 |
+
|
307 |
+
|
308 |
+
class SplitSABlock(nn.Module):
|
309 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
310 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
311 |
+
super().__init__()
|
312 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
313 |
+
self.t_norm = norm_layer(dim)
|
314 |
+
self.t_attn = Attention(
|
315 |
+
dim,
|
316 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
317 |
+
attn_drop=attn_drop, proj_drop=drop)
|
318 |
+
self.norm1 = norm_layer(dim)
|
319 |
+
self.attn = Attention(
|
320 |
+
dim,
|
321 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
322 |
+
attn_drop=attn_drop, proj_drop=drop)
|
323 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
324 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
325 |
+
self.norm2 = norm_layer(dim)
|
326 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
327 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
328 |
+
|
329 |
+
def forward(self, x, global_attn):
|
330 |
+
x = x + self.pos_embed(x)
|
331 |
+
B, C, T, H, W = x.shape
|
332 |
+
attn = x.view(B, C, T, H * W).permute(0, 3, 2, 1).contiguous()
|
333 |
+
attn = attn.view(B * H * W, T, C)
|
334 |
+
attn, global_attn = self.t_attn(self.t_norm(attn),global_attn)
|
335 |
+
attn = attn + self.drop_path(attn)
|
336 |
+
attn = attn.view(B, H * W, T, C).permute(0, 2, 1, 3).contiguous()
|
337 |
+
attn = attn.view(B * T, H * W, C)
|
338 |
+
residual = x.view(B, C, T, H * W).permute(0, 2, 3, 1).contiguous()
|
339 |
+
residual = residual.view(B * T, H * W, C)
|
340 |
+
attn, global_attn = self.attn(self.norm1(attn), global_attn)
|
341 |
+
attn = residual + self.drop_path(attn)
|
342 |
+
attn = attn.view(B, T * H * W, C)
|
343 |
+
out = attn + self.drop_path(self.mlp(self.norm2(attn)))
|
344 |
+
out = out.transpose(1, 2).reshape(B, C, T, H, W)
|
345 |
+
return out, global_attn
|
346 |
+
|
347 |
+
|
348 |
+
class SpeicalPatchEmbed(nn.Module):
|
349 |
+
""" Image to Patch Embedding
|
350 |
+
"""
|
351 |
+
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
|
352 |
+
super().__init__()
|
353 |
+
patch_size = to_2tuple(patch_size)
|
354 |
+
self.patch_size = patch_size
|
355 |
+
|
356 |
+
self.proj = nn.Sequential(
|
357 |
+
nn.Conv3d(in_chans, embed_dim // 2, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1)),
|
358 |
+
nn.BatchNorm3d(embed_dim // 2),
|
359 |
+
nn.GELU(),
|
360 |
+
nn.Conv3d(embed_dim // 2, embed_dim, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
|
361 |
+
nn.BatchNorm3d(embed_dim),
|
362 |
+
)
|
363 |
+
|
364 |
+
def forward(self, x):
|
365 |
+
B, C, T, H, W = x.shape
|
366 |
+
# FIXME look at relaxing size constraints
|
367 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
368 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
369 |
+
x = self.proj(x)
|
370 |
+
B, C, T, H, W = x.shape
|
371 |
+
x = x.flatten(2).transpose(1, 2)
|
372 |
+
x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
|
373 |
+
return x
|
374 |
+
|
375 |
+
|
376 |
+
class PatchEmbed(nn.Module):
|
377 |
+
""" Image to Patch Embedding
|
378 |
+
"""
|
379 |
+
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
|
380 |
+
super().__init__()
|
381 |
+
patch_size = to_2tuple(patch_size)
|
382 |
+
self.patch_size = patch_size
|
383 |
+
self.norm = nn.LayerNorm(embed_dim)
|
384 |
+
self.proj = conv_1xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
B, C, T, H, W = x.shape
|
388 |
+
# FIXME look at relaxing size constraints
|
389 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
390 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
391 |
+
x = self.proj(x)
|
392 |
+
B, C, T, H, W = x.shape
|
393 |
+
x = x.flatten(2).transpose(1, 2)
|
394 |
+
x = self.norm(x)
|
395 |
+
x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
|
396 |
+
return x
|
397 |
+
|
398 |
+
class Uniformer_light(nn.Module):
|
399 |
+
""" Vision Transformer
|
400 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
401 |
+
https://arxiv.org/abs/2010.11929
|
402 |
+
"""
|
403 |
+
|
404 |
+
# def __init__(self, cfg):
|
405 |
+
# super().__init__()
|
406 |
+
|
407 |
+
def __init__(self, depth=[3, 5, 9, 3], num_classes=400, img_size=224, in_chans=3, embed_dim=[64, 128, 256, 512],
|
408 |
+
head_dim=32, mlp_ratio=3., qkv_bias=True, qk_scale=None, representation_size=None,
|
409 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
410 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
411 |
+
drop_rate=0.3, attn_drop_rate=0., drop_path_rate=0., norm_layer=None, split=False, std=False):
|
412 |
+
super().__init__()
|
413 |
+
|
414 |
+
# depth = cfg.UNIFORMER.DEPTH
|
415 |
+
# num_classes = cfg.MODEL.NUM_CLASSES
|
416 |
+
# in_chans = cfg.DATA.INPUT_CHANNEL_NUM[0]
|
417 |
+
# embed_dim = cfg.UNIFORMER.EMBED_DIM
|
418 |
+
# head_dim = cfg.UNIFORMER.HEAD_DIM
|
419 |
+
# mlp_ratio = cfg.UNIFORMER.MLP_RATIO
|
420 |
+
# qkv_bias = cfg.UNIFORMER.QKV_BIAS
|
421 |
+
# qk_scale = cfg.UNIFORMER.QKV_SCALE
|
422 |
+
# representation_size = cfg.UNIFORMER.REPRESENTATION_SIZE
|
423 |
+
# drop_rate = cfg.UNIFORMER.DROPOUT_RATE
|
424 |
+
# attn_drop_rate = cfg.UNIFORMER.ATTENTION_DROPOUT_RATE
|
425 |
+
# drop_path_rate = cfg.UNIFORMER.DROP_DEPTH_RATE
|
426 |
+
# prune_ratio = cfg.UNIFORMER.PRUNE_RATIO
|
427 |
+
# trade_off = cfg.UNIFORMER.TRADE_OFF
|
428 |
+
|
429 |
+
self.num_classes = num_classes
|
430 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
431 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
432 |
+
|
433 |
+
self.patch_embed1 = SpeicalPatchEmbed(
|
434 |
+
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
|
435 |
+
self.patch_embed2 = PatchEmbed(
|
436 |
+
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
|
437 |
+
self.patch_embed3 = PatchEmbed(
|
438 |
+
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
|
439 |
+
self.patch_embed4 = PatchEmbed(
|
440 |
+
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
|
441 |
+
|
442 |
+
# class token
|
443 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2]))
|
444 |
+
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3])
|
445 |
+
|
446 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
447 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
|
448 |
+
num_heads = [dim // head_dim for dim in embed_dim]
|
449 |
+
self.blocks1 = nn.ModuleList([
|
450 |
+
CBlock(
|
451 |
+
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
452 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
453 |
+
for i in range(depth[0])])
|
454 |
+
self.blocks2 = nn.ModuleList([
|
455 |
+
CBlock(
|
456 |
+
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
457 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
|
458 |
+
for i in range(depth[1])])
|
459 |
+
self.blocks3 = nn.ModuleList([
|
460 |
+
EvoSABlock(
|
461 |
+
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
462 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer,
|
463 |
+
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i],
|
464 |
+
downsample=True if i == depth[2] - 1 else False)
|
465 |
+
for i in range(depth[2])])
|
466 |
+
self.blocks4 = nn.ModuleList([
|
467 |
+
EvoSABlock(
|
468 |
+
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
469 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer,
|
470 |
+
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i])
|
471 |
+
for i in range(depth[3])])
|
472 |
+
self.norm = bn_3d(embed_dim[-1])
|
473 |
+
self.norm_cls = nn.LayerNorm(embed_dim[-1])
|
474 |
+
|
475 |
+
# Representation layer
|
476 |
+
if representation_size:
|
477 |
+
self.num_features = representation_size
|
478 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
479 |
+
('fc', nn.Linear(embed_dim, representation_size)),
|
480 |
+
('act', nn.Tanh())
|
481 |
+
]))
|
482 |
+
else:
|
483 |
+
self.pre_logits = nn.Identity()
|
484 |
+
|
485 |
+
# Classifier head
|
486 |
+
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
487 |
+
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
488 |
+
|
489 |
+
self.apply(self._init_weights)
|
490 |
+
|
491 |
+
self.global_attn = None
|
492 |
+
self.token_indices = None
|
493 |
+
|
494 |
+
for name, p in self.named_parameters():
|
495 |
+
# fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs
|
496 |
+
# are multiplied by 0*0, which is hard for the model to move out of.
|
497 |
+
if 't_attn.qkv.weight' in name:
|
498 |
+
nn.init.constant_(p, 0)
|
499 |
+
if 't_attn.qkv.bias' in name:
|
500 |
+
nn.init.constant_(p, 0)
|
501 |
+
if 't_attn.proj.weight' in name:
|
502 |
+
nn.init.constant_(p, 1)
|
503 |
+
if 't_attn.proj.bias' in name:
|
504 |
+
nn.init.constant_(p, 0)
|
505 |
+
|
506 |
+
def _init_weights(self, m):
|
507 |
+
if isinstance(m, nn.Linear):
|
508 |
+
trunc_normal_(m.weight, std=.02)
|
509 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
510 |
+
nn.init.constant_(m.bias, 0)
|
511 |
+
elif isinstance(m, nn.LayerNorm):
|
512 |
+
nn.init.constant_(m.bias, 0)
|
513 |
+
nn.init.constant_(m.weight, 1.0)
|
514 |
+
|
515 |
+
@torch.jit.ignore
|
516 |
+
def no_weight_decay(self):
|
517 |
+
return {'pos_embed', 'cls_token'}
|
518 |
+
|
519 |
+
def get_classifier(self):
|
520 |
+
return self.head
|
521 |
+
|
522 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
523 |
+
self.num_classes = num_classes
|
524 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
525 |
+
|
526 |
+
def inflate_weight(self, weight_2d, time_dim, center=False):
|
527 |
+
if center:
|
528 |
+
weight_3d = torch.zeros(*weight_2d.shape)
|
529 |
+
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
530 |
+
middle_idx = time_dim // 2
|
531 |
+
weight_3d[:, :, middle_idx, :, :] = weight_2d
|
532 |
+
else:
|
533 |
+
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
534 |
+
weight_3d = weight_3d / time_dim
|
535 |
+
return weight_3d
|
536 |
+
|
537 |
+
def get_pretrained_model(self, cfg):
|
538 |
+
if cfg.UNIFORMER.PRETRAIN_NAME:
|
539 |
+
checkpoint = torch.load(model_path[cfg.UNIFORMER.PRETRAIN_NAME], map_location='cpu')
|
540 |
+
|
541 |
+
state_dict_3d = self.state_dict()
|
542 |
+
for k in checkpoint.keys():
|
543 |
+
if checkpoint[k].shape != state_dict_3d[k].shape:
|
544 |
+
if len(state_dict_3d[k].shape) <= 2:
|
545 |
+
logger.info(f'Ignore: {k}')
|
546 |
+
continue
|
547 |
+
logger.info(f'Inflate: {k}, {checkpoint[k].shape} => {state_dict_3d[k].shape}')
|
548 |
+
time_dim = state_dict_3d[k].shape[2]
|
549 |
+
checkpoint[k] = self.inflate_weight(checkpoint[k], time_dim)
|
550 |
+
|
551 |
+
if self.num_classes != checkpoint['head.weight'].shape[0]:
|
552 |
+
del checkpoint['head.weight']
|
553 |
+
del checkpoint['head.bias']
|
554 |
+
del checkpoint['head_cls.weight']
|
555 |
+
del checkpoint['head_cls.bias']
|
556 |
+
return checkpoint
|
557 |
+
else:
|
558 |
+
return None
|
559 |
+
|
560 |
+
def forward_features(self, x):
|
561 |
+
x = self.patch_embed1(x)
|
562 |
+
x = self.pos_drop(x)
|
563 |
+
for blk in self.blocks1:
|
564 |
+
x = blk(x)
|
565 |
+
x = self.patch_embed2(x)
|
566 |
+
for blk in self.blocks2:
|
567 |
+
x = blk(x)
|
568 |
+
x = self.patch_embed3(x)
|
569 |
+
# add cls_token in stage3
|
570 |
+
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
571 |
+
# global global_attn, token_indices
|
572 |
+
self.global_attn = 0
|
573 |
+
self.token_indices = torch.arange(x.shape[2] * x.shape[3] * x.shape[4], dtype=torch.long, device=x.device).unsqueeze(0)
|
574 |
+
self.token_indices = self.token_indices.expand(x.shape[0], -1)
|
575 |
+
for blk in self.blocks3:
|
576 |
+
cls_token, x, self.global_attn, self.token_indices = blk(cls_token, x, self.global_attn, self.token_indices)
|
577 |
+
# upsample cls_token before stage4
|
578 |
+
cls_token = self.cls_upsample(cls_token)
|
579 |
+
x = self.patch_embed4(x)
|
580 |
+
# whether reset global attention? Now simple avgpool
|
581 |
+
self.token_indices = torch.arange(x.shape[2] * x.shape[3] * x.shape[4], dtype=torch.long, device=x.device).unsqueeze(0)
|
582 |
+
self.token_indices = self.token_indices.expand(x.shape[0], -1)
|
583 |
+
for blk in self.blocks4:
|
584 |
+
cls_token, x, self.global_attn, self.token_indices = blk(cls_token, x, self.global_attn, self.token_indices)
|
585 |
+
if self.training:
|
586 |
+
# layer normalization for cls_token
|
587 |
+
cls_token = self.norm_cls(cls_token)
|
588 |
+
x = self.norm(x)
|
589 |
+
x = self.pre_logits(x)
|
590 |
+
return cls_token, x
|
591 |
+
|
592 |
+
def forward(self, x):
|
593 |
+
# x = x[0]
|
594 |
+
cls_token, x = self.forward_features(x)
|
595 |
+
x = x.flatten(2).mean(-1)
|
596 |
+
# if self.training:
|
597 |
+
# x = self.head(x), self.head_cls(cls_token.squeeze(1))
|
598 |
+
# else:
|
599 |
+
# x = self.head(x)
|
600 |
+
x = self.head(x), self.head_cls(cls_token.squeeze(1))
|
601 |
+
return x
|
602 |
+
|
603 |
+
def uniformer_xs():
|
604 |
+
return Uniformer_light(
|
605 |
+
depth=[3, 5, 9, 3], embed_dim=[64, 128, 256, 512],
|
606 |
+
head_dim=32, drop_rate=0.1
|
607 |
+
)
|
608 |
+
|
609 |
+
def uniformer_xxs():
|
610 |
+
return Uniformer_light(
|
611 |
+
depth=[2, 5, 8, 2], embed_dim=[56, 112, 224, 448],
|
612 |
+
head_dim=28, drop_rate=0.05
|
613 |
+
)
|
614 |
+
|
615 |
+
class UniformerXXSFinetune(torch.nn.Module):
|
616 |
+
|
617 |
+
def __init__(self, out_class=20):
|
618 |
+
super(UniformerXXSFinetune, self).__init__()
|
619 |
+
self.pretrained = uniformer_xxs()
|
620 |
+
self.fc = torch.nn.Linear(400,out_class)
|
621 |
+
|
622 |
+
def forward(self, x):
|
623 |
+
x = self.pretrained(x)[0]
|
624 |
+
x = self.fc(x)
|
625 |
+
return F.softmax(x,dim=-1)
|