File size: 3,657 Bytes
7ec53ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import math
import pandas as pd
import talib
def technology(df): # 定义计算技术指标的函数
slippage = 0.001 # 设置滑点千分之一
commission = 0.0013 # 设置滑点千分之一
try:
df=df.sort_values(by="日期") # 以日期列为索引,避免计算错误
if "换手率" in df.columns:
df['涨跌幅(开盘原值)'] = df['涨跌幅(开盘)'].shift(-1)
df['涨跌幅(原值)'] = df['涨跌幅']+1
for n in range(1, 30):
if n == 1:
df[f"{n}日后总涨跌幅(未来函数)"] = df['涨跌幅(原值)'].shift(-1)-1
if n > 1:
df[f"{n}日后总涨跌幅(未来函数)"] = (
(df[f"{n-1}日后总涨跌幅(未来函数)"]+1)*df['涨跌幅(原值)'].shift(-n))-1
# for n in range(1, 81):
# # 计算加滑点之后的收益,A股扣一分钱版本
# df["买入(未来函数)"] = df["开盘"].apply(
# lambda x: math.ceil(x * (1 + slippage) * 100) / 100)
# df["卖出(未来函数)"] = df["开盘"].apply(lambda x: math.floor(
# x * (1 - slippage) * (1 - commission) * 100) / 100)
# df[f"{n}日后总涨跌幅(未来函数)"] = (
# df["卖出(未来函数)"].copy().shift(-n) / df["买入(未来函数)"]) - 1
df[f"{5}日量比"] = df["成交量"] / \
talib.MA(df["成交量"], timeperiod=5, matype=0)
df[f"{40}日成交量低点"] = df['成交量'].rolling(40).min()
df[f"{40}日成交量高点"] = df['成交量'].rolling(40).max()
df[f"{5}日收盘高点"] = df['收盘'].rolling(40).min()
# df = df[df[f"收盘"] > 4].copy()
else:
for n in range(1, 50):
# 计算不加滑点的收益
df[f"{n}日后总涨跌幅(未来函数)"] = (
df["收盘"].copy().shift(-n) / df["收盘"]) - 1
df[f"{5}日量比"] = df["成交量"] / \
talib.MA(df["成交量"], timeperiod=5, matype=0)
df[f"{40}日成交量低点"] = df['成交量'].rolling(40).min()
df[f"{40}日成交量高点"] = df['成交量'].rolling(40).max()
df[f"{5}日收盘高点"] = df['收盘'].rolling(40).min()
# df = df[df[f"收盘"] > 4].copy()
except Exception as e:
print(f"发生bug: {e}")
return df
def rank(df): # 计算每个标的的各个指标在当日的排名,并将排名映射到 [0, 1] 的区间中
# 计算每个指标的排名
for column in df.columns: # 从大到小排序
if (("未来函数" or "日期" or "代码") not in str(column)):
df = pd.concat([df, (df[str(column)].rank(method="max", ascending=False) / len(df)).rename(f"{str(column)}_rank")], axis=1)
return df
def choose(name, df):
df = df.sort_values(by="日期") # 以日期列为索引,避免计算错误
code = df[df["日期"] == df["日期"].min()]["代码"] # 获取首日标的数量,杜绝未来函数
print(name, "首日标的数量", len(code))
if ("股票" in name): # 数据截取
df = df[(df["开盘"] >= 4)].copy() # 过滤垃圾股
df = df[(df["涨跌幅(开盘原值)"] <= 0.09)].copy() # 过滤垃圾股
m = 0.01 # 设置手续费
n = 25 # 设置持仓周期
if ("COIN" in name):
m = 0.001 # 设置手续费
n = 25 # 设置持仓周期
print(name, n)
return df, m, n
|