File size: 890 Bytes
f3c9d85 4b5daef 769f2a7 f3c9d85 769f2a7 f3c9d85 9e23412 f3c9d85 769f2a7 9e23412 f3c9d85 9e23412 f3c9d85 9e23412 769f2a7 9e23412 769f2a7 f3c9d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
base_model: vidore/colpaligemma-3b-mix-448-base
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** PaliGemma
- **Finetuned from model [optional]:** vidore/colpali-v1.2
## Uses
This model is finetuned from `vidore/colpali-v1.2` using the PEFT library. To use this model, you only need to change the path ColPali is loaded from.
```python
device = get_torch_device("auto")
print(f"Device used: {device}")
# Model name
model_name = "path/to/fine_tuned_model"
# Load model
model = ColPali.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
).eval()
# Load processor
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
```
- PEFT 0.11.1 |