File size: 890 Bytes
f3c9d85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b5daef
769f2a7
f3c9d85
 
769f2a7
f3c9d85
9e23412
f3c9d85
769f2a7
9e23412
 
f3c9d85
9e23412
 
f3c9d85
9e23412
 
 
 
 
 
769f2a7
9e23412
 
769f2a7
 
f3c9d85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
base_model: vidore/colpaligemma-3b-mix-448-base
library_name: peft
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Model type:** PaliGemma
- **Finetuned from model [optional]:** vidore/colpali-v1.2


## Uses

This model is finetuned from `vidore/colpali-v1.2` using the PEFT library. To use this model, you only need to change the path ColPali is loaded from.

```python
device = get_torch_device("auto")
print(f"Device used: {device}")

# Model name
model_name = "path/to/fine_tuned_model"

# Load model
model = ColPali.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map=device,
).eval()

# Load processor
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))

```

- PEFT 0.11.1