commissarsilver commited on
Commit
769f2a7
·
verified ·
1 Parent(s): f3c9d85

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +19 -14
README.md CHANGED
@@ -15,27 +15,32 @@ library_name: peft
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
 
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
  ### Direct Use
41
 
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
+ - **Model type:** vidore/colpali-v1.2
19
+ - **Finetuned from model [optional]:** vidore/colpali-v1.2
20
 
21
 
22
+ ## Uses
 
 
 
 
 
 
23
 
24
+ This model is finetuned from `vidore/colpali-v1.2` using the PEFT library. To use this model, you can use the following code:
25
 
26
+ ```python
27
+ from transformers import AutoModelForCausalLM, AutoTokenizer
28
+ from peft import PeftModel
29
 
30
+ ### This will load the basemodel ###
31
+ # Load the base model
32
+ model_name = "colpali_finetuned"
33
+ model = AutoModelForCausalLM.from_pretrained(model_name)
34
 
35
+ # Load the tokenizer
36
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
37
+
38
+
39
+ ### This will load the adapter model ###
40
 
41
+ peft_model_path='colpali_finetuned/checkpoint-587"
42
+ model = PeftModel.from_pretrained(peft_model_path)
43
+ ```
44
 
45
  ### Direct Use
46