Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -21,26 +21,25 @@ library_name: peft
|
|
21 |
|
22 |
## Uses
|
23 |
|
24 |
-
This model is finetuned from `vidore/colpali-v1.2` using the PEFT library. To use this model, you
|
25 |
|
26 |
```python
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
model_name = "colpali_finetuned"
|
33 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
34 |
|
35 |
-
# Load
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
38 |
|
39 |
-
### This will load the adapter model ###
|
40 |
-
|
41 |
-
peft_model_path='colpali_finetuned/checkpoint-587'
|
42 |
-
model = PeftModel.from_pretrained(peft_model_path)
|
43 |
```
|
44 |
|
45 |
-
|
46 |
- PEFT 0.11.1
|
|
|
21 |
|
22 |
## Uses
|
23 |
|
24 |
+
This model is finetuned from `vidore/colpali-v1.2` using the PEFT library. To use this model, you only need to change the path ColPali is loaded from.
|
25 |
|
26 |
```python
|
27 |
+
device = get_torch_device("auto")
|
28 |
+
print(f"Device used: {device}")
|
29 |
|
30 |
+
# Model name
|
31 |
+
model_name = "path/to/fine_tuned_model"
|
|
|
|
|
32 |
|
33 |
+
# Load model
|
34 |
+
model = ColPali.from_pretrained(
|
35 |
+
model_name,
|
36 |
+
torch_dtype=torch.bfloat16,
|
37 |
+
device_map=device,
|
38 |
+
).eval()
|
39 |
|
40 |
+
# Load processor
|
41 |
+
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
42 |
|
|
|
|
|
|
|
|
|
43 |
```
|
44 |
|
|
|
45 |
- PEFT 0.11.1
|