tranquil-morning commited on
Commit
e31833f
·
1 Parent(s): 165763d

End of training

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ base_model: MIT/ast-finetuned-audioset-10-10-0.4593
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.88
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6087
36
+ - Accuracy: 0.88
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 8
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 20
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 1.9526 | 1.0 | 112 | 1.8797 | 0.74 |
72
+ | 0.9704 | 2.0 | 225 | 1.0561 | 0.7 |
73
+ | 0.7957 | 3.0 | 337 | 0.7362 | 0.77 |
74
+ | 0.4428 | 4.0 | 450 | 0.7820 | 0.8 |
75
+ | 0.1422 | 5.0 | 562 | 0.6142 | 0.84 |
76
+ | 0.3502 | 6.0 | 675 | 0.9189 | 0.82 |
77
+ | 0.01 | 7.0 | 787 | 0.7735 | 0.83 |
78
+ | 0.0068 | 8.0 | 900 | 1.0699 | 0.81 |
79
+ | 0.1751 | 9.0 | 1012 | 0.5360 | 0.88 |
80
+ | 0.0045 | 10.0 | 1125 | 0.5377 | 0.89 |
81
+ | 0.154 | 11.0 | 1237 | 0.6542 | 0.86 |
82
+ | 0.0025 | 12.0 | 1350 | 0.6206 | 0.89 |
83
+ | 0.0022 | 13.0 | 1462 | 0.6118 | 0.88 |
84
+ | 0.0021 | 14.0 | 1575 | 0.5961 | 0.89 |
85
+ | 0.0018 | 15.0 | 1687 | 0.5958 | 0.88 |
86
+ | 0.0017 | 16.0 | 1800 | 0.6062 | 0.88 |
87
+ | 0.0017 | 17.0 | 1912 | 0.6005 | 0.88 |
88
+ | 0.0015 | 18.0 | 2025 | 0.6052 | 0.88 |
89
+ | 0.0014 | 19.0 | 2137 | 0.6114 | 0.88 |
90
+ | 0.0015 | 19.91 | 2240 | 0.6087 | 0.88 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.36.2
96
+ - Pytorch 2.1.2+cu118
97
+ - Datasets 2.16.1
98
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee72ae2afe952ecd265efb2f83248a5b121e071a51fdc0794eafc3a88cd9f91b
3
  size 344814656
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcfd375da199f35b16c91fa8285f3696568536fac07b6349fd89d941fbb6b5f3
3
  size 344814656