File size: 9,216 Bytes
f9e4730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import warnings
import logging
import json
import sys

sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/")
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/")
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/models")
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/models")

import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd

from TimeLLM import Model as TimeLLMModel
from unitime import UniTime as UniTimeModel

IMPLEMENTED_BASELINES = [TimeLLMModel, UniTimeModel]

from typing import Optional, Union, Dict, Callable, Iterable

def truncate_mse_loss(future_time, future_pred):
    # Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
    min_length = min(future_time.shape[-1], future_pred.shape[-1])
    return F.mse_loss(future_time[...,:min_length], future_pred[...,:min_length])

def truncate_mae_loss(future_time, future_pred):
    # Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
    min_length = min(future_time.shape[-1], future_pred.shape[-1])
    return F.l1_loss(future_time[...,:min_length], future_pred[...,:min_length])

class DotDict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

def find_pred_len_from_path(path: str) -> int:
    if "pl_96" or "pl96" in path: pred_len = 96
    elif "pl_192" or "pl192" in path: pred_len = 192
    elif "pl_336" or "pl336" in path: pred_len = 336
    elif "pl720" or "pl720" in path: pred_lent = 720
    else:
        raise ValueError(f"Could not determine prediction length of model from path {path}. Expected path to contain a substring of the form 'pl_{{pred_len}}' or 'pl{{pred_len}}'.")

    return pred_len

def find_model_name_from_path(path: str) -> str:
    path = path.lower()
    if "time-llm" in path or "timellm" in path: model_name = "time-llm"
    elif "unitime" in path: model_name = "unitime"
    else:
        raise ValueError(f"Could not determine model name from path {path}. Expected path to contain either 'time-llm', 'timellm', or 'unitime'.")

    return model_name

TIME_LLM_CONFIGS = DotDict({
    "task_name" : "long_term_forecast", "seq_len" : 512, "enc_in" : 7, "d_model" : 32, "d_ff" : 128, "llm_layers" : 32, "llm_dim" : 4096, 
    "patch_len" : 16, "stride" : 8, "llm_model" : "LLAMA", "llm_layers" : 32, "prompt_domain" : 1, "content" : None, "dropout" : 0.1, 
    "d_model" : 32, "n_heads" : 8, "enc_in" : 7
    })

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
UNITIME_CONFIGS = DotDict({
    "max_token_num" : 17, "mask_rate" : 0.5, "patch_len" : 16, "max_backcast_len" : 96, "max_forecast_len" : 720, "logger" : logger,
    "model_path" : "gpt2", "lm_layer_num" : 6, "lm_ft_type" : "freeze", "ts_embed_dropout" : 0.3, "dec_trans_layer_num" : 2, "dec_head_dropout" : 0.1,
})

class TimeLLMStarCasterWrapper(nn.Module):

    def __init__(self, time_llm_model):
        super().__init__()

        assert isinstance(time_llm_model, TimeLLMModel), f"TimeLLMStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(time_llm_model)}"
        self.base_model = time_llm_model
    
    def forward(self, past_time, context):
        self.base_model.description = context
        return self.base_model(x_enc=past_time.unsqueeze(-1), x_mark_enc=None, x_dec=None, x_mark_dec=None).squeeze(-1)
    
class UniTimeStarCasterWrapper(nn.Module):

    def __init__(self, unitime_model):
        super().__init__()

        assert isinstance(unitime_model, UniTimeModel), f"UniTimeStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(unitime_model)}"
        self.base_model = unitime_model

    def forward(self, past_time, context):
        past_time = past_time.unsqueeze(-1)
        mask = torch.ones_like(past_time)
        data_id = -1
        seq_len = 96
        stride = 16

        info = (data_id, seq_len, stride, context[:17])
        return self.base_model(info=info, x_inp=past_time, mask=mask).squeeze(-1)

class StarCasterBaseline(nn.Module):

    def __init__(self, model):
        super().__init__()

        # TODO: Make this more extendable
        if type(model) not in IMPLEMENTED_BASELINES:
            raise NotImplementedError(f"StarCasterBaseline currently only handles models of type {IMPLEMENTED_BASELINES}.")
        
        self.base_model = model
        if isinstance(self.base_model, TimeLLMModel):
            self.wrapped_model = TimeLLMStarCasterWrapper(self.base_model)
        if isinstance(self.base_model, UniTimeModel):
            self.wrapped_model = UniTimeStarCasterWrapper(self.base_model)
    
    def forward(self, past_time, context):
        return self.wrapped_model(past_time, context)
    
    def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
        return self.base_model.load_state_dict(state_dict, strict, assign)


class EvaluationPipeline:

    def __init__(
        self, 
        dataset: Iterable,
        model: TimeLLMModel, 
        metrics: Optional[Union[Callable, Dict[str, Callable]]] = None
    ):
        self.dataset = dataset
        self.metrics = metrics if metrics is not None else {"mse_loss" : truncate_mse_loss}

        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        if self.device == "cpu":
            warnings.warn("Warning: No CUDA device detected, proceeding with EvaluationPipeline on CPU .....")

        self.model = StarCasterBaseline(model).to(self.device)
    
    # TODO: This method needs to be replaced to handle actual StarCaster benchmark
    def get_evaluation_loader(self) -> Iterable:
        samples = []
        for sample in self.dataset.values():
            past_time = torch.from_numpy(sample["past_time"].to_numpy().T).float().to(self.device)
            future_time = torch.from_numpy(sample["future_time"].to_numpy().T).float().to(self.device)
            context = sample["context"]

            samples.append([past_time, future_time, context])

        return samples

    def compute_loss(self, future_time, future_pred):
        return {m_name : m(future_time, future_pred) for m_name, m in self.metrics.items()}
    
    def evaluation_step(self, past_time, future_time, context):
        with torch.no_grad():
            future_pred = self.model(past_time, context)
            loss = self.compute_loss(future_time, future_pred)
        return loss, future_pred
            
    @torch.no_grad()
    def eval(self):
        model.eval()
        infer_dataloader = self.get_evaluation_loader()
        losses, predictions = {m_name : [] for m_name in self.metrics.keys()}, []
        for past_time, future_time, context in infer_dataloader:
            loss_dict, preds = self.evaluation_step(past_time, future_time, context)

            for m_name, loss in loss_dict.items(): losses[m_name].append(loss)
            predictions.append(preds)

        model.train()
        return losses, predictions

if __name__ == "__main__":
    # from argparse import ArgumentParser

    # parser = ArgumentParser()

    # parser.add_argument("--data_path", type=str, required=True)
    # parser.add_argument("--ckpt_path", type=str, default=None)
    
    # args = parser.parse_args()

    # args = TIME_LLM_CONFIGS
    args = DotDict(dict())

    # args.ckpt_path = "./Time-LLM/checkpoints/long_term_forecast_ETTh1_512_96_TimeLLM_ETTh1_ftM_sl512_ll48_pl96_dm32_nh8_el2_dl1_df128_fc3_ebtimeF_Exp_0-TimeLLM-ETTh1/best_checkpoint/pytorch_model/mp_rank_00_model_states.pt"
    args.ckpt_path = "/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/outputs/checkpoint_gpt2-small_full_etth1-96_instruct_6_2_0.5_96/model_s2036.pth"
    args.data_path = "./example_data_dict_simple_dtypes.pkl"

    dataset = pd.read_pickle(args.data_path)
    # args.pred_len = find_pred_len_from_path(args.ckpt_path)
    # args.model_name = find_model_name_from_path(args.ckpt_path)
    args.pred_len = 96
    args.model_name = "unitime" # "time-llm"
    
    if args.model_name == "time-llm":
        args.update(TIME_LLM_CONFIGS)
    elif args.model_name == "unitime":
        args.update(UNITIME_CONFIGS)

    print(f"Initializing model from config:\n{args} .....")

    if args.model_name == "time-llm":
        model = TimeLLMModel(args)
    elif args.model_name == "unitime":
        model = UniTimeModel(args)

    if args.ckpt_path is not None:
        print(f"Loading model checkpoint from path {args.ckpt_path} .....")
        ckpt = torch.load(args.ckpt_path)
        if args.model_name == "time-llm":
            model.load_state_dict(ckpt["module"]) # TODO: Change this to not be specific to the Time-LLM checkpoint
        elif args.model_name == "unitime":
            model.load_state_dict(ckpt)

    pipeline = EvaluationPipeline(dataset, model, metrics={"mse_loss" : truncate_mse_loss, "mae_loss" : truncate_mae_loss})

    print(f"Evaluating .....")
    losses, predictions = pipeline.eval()
    print(f"Got losses: {losses}")
    print(f"Predictions has shape: {[pred.shape for pred in predictions]}")