File size: 9,216 Bytes
e11ddbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import warnings
import logging
import json
import sys
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/")
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/")
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/models")
sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/models")
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
from TimeLLM import Model as TimeLLMModel
from unitime import UniTime as UniTimeModel
IMPLEMENTED_BASELINES = [TimeLLMModel, UniTimeModel]
from typing import Optional, Union, Dict, Callable, Iterable
def truncate_mse_loss(future_time, future_pred):
# Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
min_length = min(future_time.shape[-1], future_pred.shape[-1])
return F.mse_loss(future_time[...,:min_length], future_pred[...,:min_length])
def truncate_mae_loss(future_time, future_pred):
# Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
min_length = min(future_time.shape[-1], future_pred.shape[-1])
return F.l1_loss(future_time[...,:min_length], future_pred[...,:min_length])
class DotDict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def find_pred_len_from_path(path: str) -> int:
if "pl_96" or "pl96" in path: pred_len = 96
elif "pl_192" or "pl192" in path: pred_len = 192
elif "pl_336" or "pl336" in path: pred_len = 336
elif "pl720" or "pl720" in path: pred_lent = 720
else:
raise ValueError(f"Could not determine prediction length of model from path {path}. Expected path to contain a substring of the form 'pl_{{pred_len}}' or 'pl{{pred_len}}'.")
return pred_len
def find_model_name_from_path(path: str) -> str:
path = path.lower()
if "time-llm" in path or "timellm" in path: model_name = "time-llm"
elif "unitime" in path: model_name = "unitime"
else:
raise ValueError(f"Could not determine model name from path {path}. Expected path to contain either 'time-llm', 'timellm', or 'unitime'.")
return model_name
TIME_LLM_CONFIGS = DotDict({
"task_name" : "long_term_forecast", "seq_len" : 512, "enc_in" : 7, "d_model" : 32, "d_ff" : 128, "llm_layers" : 32, "llm_dim" : 4096,
"patch_len" : 16, "stride" : 8, "llm_model" : "LLAMA", "llm_layers" : 32, "prompt_domain" : 1, "content" : None, "dropout" : 0.1,
"d_model" : 32, "n_heads" : 8, "enc_in" : 7
})
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
UNITIME_CONFIGS = DotDict({
"max_token_num" : 17, "mask_rate" : 0.5, "patch_len" : 16, "max_backcast_len" : 96, "max_forecast_len" : 720, "logger" : logger,
"model_path" : "gpt2", "lm_layer_num" : 6, "lm_ft_type" : "freeze", "ts_embed_dropout" : 0.3, "dec_trans_layer_num" : 2, "dec_head_dropout" : 0.1,
})
class TimeLLMStarCasterWrapper(nn.Module):
def __init__(self, time_llm_model):
super().__init__()
assert isinstance(time_llm_model, TimeLLMModel), f"TimeLLMStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(time_llm_model)}"
self.base_model = time_llm_model
def forward(self, past_time, context):
self.base_model.description = context
return self.base_model(x_enc=past_time.unsqueeze(-1), x_mark_enc=None, x_dec=None, x_mark_dec=None).squeeze(-1)
class UniTimeStarCasterWrapper(nn.Module):
def __init__(self, unitime_model):
super().__init__()
assert isinstance(unitime_model, UniTimeModel), f"UniTimeStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(unitime_model)}"
self.base_model = unitime_model
def forward(self, past_time, context):
past_time = past_time.unsqueeze(-1)
mask = torch.ones_like(past_time)
data_id = -1
seq_len = 96
stride = 16
info = (data_id, seq_len, stride, context[:17])
return self.base_model(info=info, x_inp=past_time, mask=mask).squeeze(-1)
class StarCasterBaseline(nn.Module):
def __init__(self, model):
super().__init__()
# TODO: Make this more extendable
if type(model) not in IMPLEMENTED_BASELINES:
raise NotImplementedError(f"StarCasterBaseline currently only handles models of type {IMPLEMENTED_BASELINES}.")
self.base_model = model
if isinstance(self.base_model, TimeLLMModel):
self.wrapped_model = TimeLLMStarCasterWrapper(self.base_model)
if isinstance(self.base_model, UniTimeModel):
self.wrapped_model = UniTimeStarCasterWrapper(self.base_model)
def forward(self, past_time, context):
return self.wrapped_model(past_time, context)
def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
return self.base_model.load_state_dict(state_dict, strict, assign)
class EvaluationPipeline:
def __init__(
self,
dataset: Iterable,
model: TimeLLMModel,
metrics: Optional[Union[Callable, Dict[str, Callable]]] = None
):
self.dataset = dataset
self.metrics = metrics if metrics is not None else {"mse_loss" : truncate_mse_loss}
self.device = "cuda" if torch.cuda.is_available() else "cpu"
if self.device == "cpu":
warnings.warn("Warning: No CUDA device detected, proceeding with EvaluationPipeline on CPU .....")
self.model = StarCasterBaseline(model).to(self.device)
# TODO: This method needs to be replaced to handle actual StarCaster benchmark
def get_evaluation_loader(self) -> Iterable:
samples = []
for sample in self.dataset.values():
past_time = torch.from_numpy(sample["past_time"].to_numpy().T).float().to(self.device)
future_time = torch.from_numpy(sample["future_time"].to_numpy().T).float().to(self.device)
context = sample["context"]
samples.append([past_time, future_time, context])
return samples
def compute_loss(self, future_time, future_pred):
return {m_name : m(future_time, future_pred) for m_name, m in self.metrics.items()}
def evaluation_step(self, past_time, future_time, context):
with torch.no_grad():
future_pred = self.model(past_time, context)
loss = self.compute_loss(future_time, future_pred)
return loss, future_pred
@torch.no_grad()
def eval(self):
model.eval()
infer_dataloader = self.get_evaluation_loader()
losses, predictions = {m_name : [] for m_name in self.metrics.keys()}, []
for past_time, future_time, context in infer_dataloader:
loss_dict, preds = self.evaluation_step(past_time, future_time, context)
for m_name, loss in loss_dict.items(): losses[m_name].append(loss)
predictions.append(preds)
model.train()
return losses, predictions
if __name__ == "__main__":
# from argparse import ArgumentParser
# parser = ArgumentParser()
# parser.add_argument("--data_path", type=str, required=True)
# parser.add_argument("--ckpt_path", type=str, default=None)
# args = parser.parse_args()
# args = TIME_LLM_CONFIGS
args = DotDict(dict())
# args.ckpt_path = "./Time-LLM/checkpoints/long_term_forecast_ETTh1_512_96_TimeLLM_ETTh1_ftM_sl512_ll48_pl96_dm32_nh8_el2_dl1_df128_fc3_ebtimeF_Exp_0-TimeLLM-ETTh1/best_checkpoint/pytorch_model/mp_rank_00_model_states.pt"
args.ckpt_path = "/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/outputs/checkpoint_gpt2-small_full_etth1-96_instruct_6_2_0.5_96/model_s2036.pth"
args.data_path = "./example_data_dict_simple_dtypes.pkl"
dataset = pd.read_pickle(args.data_path)
# args.pred_len = find_pred_len_from_path(args.ckpt_path)
# args.model_name = find_model_name_from_path(args.ckpt_path)
args.pred_len = 96
args.model_name = "unitime" # "time-llm"
if args.model_name == "time-llm":
args.update(TIME_LLM_CONFIGS)
elif args.model_name == "unitime":
args.update(UNITIME_CONFIGS)
print(f"Initializing model from config:\n{args} .....")
if args.model_name == "time-llm":
model = TimeLLMModel(args)
elif args.model_name == "unitime":
model = UniTimeModel(args)
if args.ckpt_path is not None:
print(f"Loading model checkpoint from path {args.ckpt_path} .....")
ckpt = torch.load(args.ckpt_path)
if args.model_name == "time-llm":
model.load_state_dict(ckpt["module"]) # TODO: Change this to not be specific to the Time-LLM checkpoint
elif args.model_name == "unitime":
model.load_state_dict(ckpt)
pipeline = EvaluationPipeline(dataset, model, metrics={"mse_loss" : truncate_mse_loss, "mae_loss" : truncate_mae_loss})
print(f"Evaluating .....")
losses, predictions = pipeline.eval()
print(f"Got losses: {losses}")
print(f"Predictions has shape: {[pred.shape for pred in predictions]}") |