AWildHippo commited on
Commit
d11b9f4
1 Parent(s): e11ddbc

Delete starcaster_eval_pipeline.py

Browse files
Files changed (1) hide show
  1. starcaster_eval_pipeline.py +0 -223
starcaster_eval_pipeline.py DELETED
@@ -1,223 +0,0 @@
1
- import warnings
2
- import logging
3
- import json
4
- import sys
5
-
6
- sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/")
7
- sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/")
8
- sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/Time-LLM/models")
9
- sys.path.append("/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/models")
10
-
11
- import torch
12
- import torch.nn as nn
13
- import torch.nn.functional as F
14
- import pandas as pd
15
-
16
- from TimeLLM import Model as TimeLLMModel
17
- from unitime import UniTime as UniTimeModel
18
-
19
- IMPLEMENTED_BASELINES = [TimeLLMModel, UniTimeModel]
20
-
21
- from typing import Optional, Union, Dict, Callable, Iterable
22
-
23
- def truncate_mse_loss(future_time, future_pred):
24
- # Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
25
- min_length = min(future_time.shape[-1], future_pred.shape[-1])
26
- return F.mse_loss(future_time[...,:min_length], future_pred[...,:min_length])
27
-
28
- def truncate_mae_loss(future_time, future_pred):
29
- # Assumes future_time.shape == (B, T1) and future_pred.shape == (B, T2)
30
- min_length = min(future_time.shape[-1], future_pred.shape[-1])
31
- return F.l1_loss(future_time[...,:min_length], future_pred[...,:min_length])
32
-
33
- class DotDict(dict):
34
- """dot.notation access to dictionary attributes"""
35
- __getattr__ = dict.get
36
- __setattr__ = dict.__setitem__
37
- __delattr__ = dict.__delitem__
38
-
39
- def find_pred_len_from_path(path: str) -> int:
40
- if "pl_96" or "pl96" in path: pred_len = 96
41
- elif "pl_192" or "pl192" in path: pred_len = 192
42
- elif "pl_336" or "pl336" in path: pred_len = 336
43
- elif "pl720" or "pl720" in path: pred_lent = 720
44
- else:
45
- raise ValueError(f"Could not determine prediction length of model from path {path}. Expected path to contain a substring of the form 'pl_{{pred_len}}' or 'pl{{pred_len}}'.")
46
-
47
- return pred_len
48
-
49
- def find_model_name_from_path(path: str) -> str:
50
- path = path.lower()
51
- if "time-llm" in path or "timellm" in path: model_name = "time-llm"
52
- elif "unitime" in path: model_name = "unitime"
53
- else:
54
- raise ValueError(f"Could not determine model name from path {path}. Expected path to contain either 'time-llm', 'timellm', or 'unitime'.")
55
-
56
- return model_name
57
-
58
- TIME_LLM_CONFIGS = DotDict({
59
- "task_name" : "long_term_forecast", "seq_len" : 512, "enc_in" : 7, "d_model" : 32, "d_ff" : 128, "llm_layers" : 32, "llm_dim" : 4096,
60
- "patch_len" : 16, "stride" : 8, "llm_model" : "LLAMA", "llm_layers" : 32, "prompt_domain" : 1, "content" : None, "dropout" : 0.1,
61
- "d_model" : 32, "n_heads" : 8, "enc_in" : 7
62
- })
63
-
64
- logger = logging.getLogger(__name__)
65
- logger.setLevel(logging.INFO)
66
- UNITIME_CONFIGS = DotDict({
67
- "max_token_num" : 17, "mask_rate" : 0.5, "patch_len" : 16, "max_backcast_len" : 96, "max_forecast_len" : 720, "logger" : logger,
68
- "model_path" : "gpt2", "lm_layer_num" : 6, "lm_ft_type" : "freeze", "ts_embed_dropout" : 0.3, "dec_trans_layer_num" : 2, "dec_head_dropout" : 0.1,
69
- })
70
-
71
- class TimeLLMStarCasterWrapper(nn.Module):
72
-
73
- def __init__(self, time_llm_model):
74
- super().__init__()
75
-
76
- assert isinstance(time_llm_model, TimeLLMModel), f"TimeLLMStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(time_llm_model)}"
77
- self.base_model = time_llm_model
78
-
79
- def forward(self, past_time, context):
80
- self.base_model.description = context
81
- return self.base_model(x_enc=past_time.unsqueeze(-1), x_mark_enc=None, x_dec=None, x_mark_dec=None).squeeze(-1)
82
-
83
- class UniTimeStarCasterWrapper(nn.Module):
84
-
85
- def __init__(self, unitime_model):
86
- super().__init__()
87
-
88
- assert isinstance(unitime_model, UniTimeModel), f"UniTimeStarCasterWrapper can only wrap a model of class TimeLLM.Model but got {type(unitime_model)}"
89
- self.base_model = unitime_model
90
-
91
- def forward(self, past_time, context):
92
- past_time = past_time.unsqueeze(-1)
93
- mask = torch.ones_like(past_time)
94
- data_id = -1
95
- seq_len = 96
96
- stride = 16
97
-
98
- info = (data_id, seq_len, stride, context[:17])
99
- return self.base_model(info=info, x_inp=past_time, mask=mask).squeeze(-1)
100
-
101
- class StarCasterBaseline(nn.Module):
102
-
103
- def __init__(self, model):
104
- super().__init__()
105
-
106
- # TODO: Make this more extendable
107
- if type(model) not in IMPLEMENTED_BASELINES:
108
- raise NotImplementedError(f"StarCasterBaseline currently only handles models of type {IMPLEMENTED_BASELINES}.")
109
-
110
- self.base_model = model
111
- if isinstance(self.base_model, TimeLLMModel):
112
- self.wrapped_model = TimeLLMStarCasterWrapper(self.base_model)
113
- if isinstance(self.base_model, UniTimeModel):
114
- self.wrapped_model = UniTimeStarCasterWrapper(self.base_model)
115
-
116
- def forward(self, past_time, context):
117
- return self.wrapped_model(past_time, context)
118
-
119
- def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
120
- return self.base_model.load_state_dict(state_dict, strict, assign)
121
-
122
-
123
- class EvaluationPipeline:
124
-
125
- def __init__(
126
- self,
127
- dataset: Iterable,
128
- model: TimeLLMModel,
129
- metrics: Optional[Union[Callable, Dict[str, Callable]]] = None
130
- ):
131
- self.dataset = dataset
132
- self.metrics = metrics if metrics is not None else {"mse_loss" : truncate_mse_loss}
133
-
134
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
135
- if self.device == "cpu":
136
- warnings.warn("Warning: No CUDA device detected, proceeding with EvaluationPipeline on CPU .....")
137
-
138
- self.model = StarCasterBaseline(model).to(self.device)
139
-
140
- # TODO: This method needs to be replaced to handle actual StarCaster benchmark
141
- def get_evaluation_loader(self) -> Iterable:
142
- samples = []
143
- for sample in self.dataset.values():
144
- past_time = torch.from_numpy(sample["past_time"].to_numpy().T).float().to(self.device)
145
- future_time = torch.from_numpy(sample["future_time"].to_numpy().T).float().to(self.device)
146
- context = sample["context"]
147
-
148
- samples.append([past_time, future_time, context])
149
-
150
- return samples
151
-
152
- def compute_loss(self, future_time, future_pred):
153
- return {m_name : m(future_time, future_pred) for m_name, m in self.metrics.items()}
154
-
155
- def evaluation_step(self, past_time, future_time, context):
156
- with torch.no_grad():
157
- future_pred = self.model(past_time, context)
158
- loss = self.compute_loss(future_time, future_pred)
159
- return loss, future_pred
160
-
161
- @torch.no_grad()
162
- def eval(self):
163
- model.eval()
164
- infer_dataloader = self.get_evaluation_loader()
165
- losses, predictions = {m_name : [] for m_name in self.metrics.keys()}, []
166
- for past_time, future_time, context in infer_dataloader:
167
- loss_dict, preds = self.evaluation_step(past_time, future_time, context)
168
-
169
- for m_name, loss in loss_dict.items(): losses[m_name].append(loss)
170
- predictions.append(preds)
171
-
172
- model.train()
173
- return losses, predictions
174
-
175
- if __name__ == "__main__":
176
- # from argparse import ArgumentParser
177
-
178
- # parser = ArgumentParser()
179
-
180
- # parser.add_argument("--data_path", type=str, required=True)
181
- # parser.add_argument("--ckpt_path", type=str, default=None)
182
-
183
- # args = parser.parse_args()
184
-
185
- # args = TIME_LLM_CONFIGS
186
- args = DotDict(dict())
187
-
188
- # args.ckpt_path = "./Time-LLM/checkpoints/long_term_forecast_ETTh1_512_96_TimeLLM_ETTh1_ftM_sl512_ll48_pl96_dm32_nh8_el2_dl1_df128_fc3_ebtimeF_Exp_0-TimeLLM-ETTh1/best_checkpoint/pytorch_model/mp_rank_00_model_states.pt"
189
- args.ckpt_path = "/lustre/orion/csc605/scratch/rolandriachi/starcaster/UniTime/outputs/checkpoint_gpt2-small_full_etth1-96_instruct_6_2_0.5_96/model_s2036.pth"
190
- args.data_path = "./example_data_dict_simple_dtypes.pkl"
191
-
192
- dataset = pd.read_pickle(args.data_path)
193
- # args.pred_len = find_pred_len_from_path(args.ckpt_path)
194
- # args.model_name = find_model_name_from_path(args.ckpt_path)
195
- args.pred_len = 96
196
- args.model_name = "unitime" # "time-llm"
197
-
198
- if args.model_name == "time-llm":
199
- args.update(TIME_LLM_CONFIGS)
200
- elif args.model_name == "unitime":
201
- args.update(UNITIME_CONFIGS)
202
-
203
- print(f"Initializing model from config:\n{args} .....")
204
-
205
- if args.model_name == "time-llm":
206
- model = TimeLLMModel(args)
207
- elif args.model_name == "unitime":
208
- model = UniTimeModel(args)
209
-
210
- if args.ckpt_path is not None:
211
- print(f"Loading model checkpoint from path {args.ckpt_path} .....")
212
- ckpt = torch.load(args.ckpt_path)
213
- if args.model_name == "time-llm":
214
- model.load_state_dict(ckpt["module"]) # TODO: Change this to not be specific to the Time-LLM checkpoint
215
- elif args.model_name == "unitime":
216
- model.load_state_dict(ckpt)
217
-
218
- pipeline = EvaluationPipeline(dataset, model, metrics={"mse_loss" : truncate_mse_loss, "mae_loss" : truncate_mae_loss})
219
-
220
- print(f"Evaluating .....")
221
- losses, predictions = pipeline.eval()
222
- print(f"Got losses: {losses}")
223
- print(f"Predictions has shape: {[pred.shape for pred in predictions]}")