trissondon
commited on
Commit
•
c3a45bd
1
Parent(s):
d3a39e8
Upload model v0.1
Browse files- LL_01.zip +3 -0
- LL_01/_stable_baselines3_version +1 -0
- LL_01/data +94 -0
- LL_01/policy.optimizer.pth +3 -0
- LL_01/policy.pth +3 -0
- LL_01/pytorch_variables.pth +3 -0
- LL_01/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LL_01.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2409fe963529592460a216e1133388c0b7fc55380a0d1e666601089d0657f69a
|
3 |
+
size 147089
|
LL_01/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
LL_01/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0635454d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe063545560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0635455f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe063545680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe063545710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe0635457a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe063545830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe0635458c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe063545950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0635459e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe063545a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe063582f90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1660155101.513271,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPLZrwcxye8yF5mPIGKDj1zWYm9gE/lPQAAgD8AAIA/AMKUPNeVHD/bCvS9EWSuviCYm70r5H87AAAAAAAAAADzWNq9EuFNPlNngj7H84W+dx3JPZtTRLwAAAAAAAAAAJOtCr4MbYc/HRajvglT8r4tu36++90uvgAAAAAAAAAAM0e4PCmxULz1pye+ctmqvXodjz3SuxE/AACAPwAAgD9mgK+86D+3Pdnhsb1ezoe+ii/8vCKtZT0AAAAAAAAAAM1FM709LQC7pf1ouqDFhjwH57Y7iB1qvQAAgD8AAIA/AHxqPON4Xz3advy9HtKOvmsHM72qs4I7AAAAAAAAAADmziK9Ujaku/5zQLtPn388fj8EPdutWr0AAIA/AACAPzPEhjwK3zq7Pt1kvJEnkDxzKH28Cip4PQAAgD8AAIA/mmlzuyUPtz++5Zm9Kz/xPYq/ijsO4Ik8AAAAAAAAAADN40W9TxgCvPubyjyQpmM95/YSPMZPBrsAAIA/AACAP80cnDt/gLM/DmTFPb5WBL7JdbG7h9WwvAAAAAAAAAAAM02TPPv0nz6CuXW9cZK3vmgWabySPzI8AAAAAAAAAAAz6XE8FMCSusO32TpGEew1T1i6Os6l+rkAAIA/AACAPxrCW74cZAk/Oe0CPokewb4aEwe+Ht86PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl43O+Slpc0CUhpRSlIwBbJRNKwGMAXSUR0CtX24u01IidX2UKGgGaAloD0MITWVR2MUtcUCUhpRSlGgVTSMBaBZHQK1fejVQQ+V1fZQoaAZoCWgPQwjG3LWE/JFvQJSGlFKUaBVNDQFoFkdArV+4SL61s3V9lChoBmgJaA9DCMHG9e96UHJAlIaUUpRoFU1JAWgWR0CtX8NFSbYsdX2UKGgGaAloD0MI9NxCV+KQc0CUhpRSlGgVS+hoFkdArWC30oScsnV9lChoBmgJaA9DCIo73uS3M25AlIaUUpRoFU0KAWgWR0CtYLvZqVQidX2UKGgGaAloD0MIOBQ+W4cJcECUhpRSlGgVTQ4BaBZHQK1gz6WPcSJ1fZQoaAZoCWgPQwiwkLkyKHNyQJSGlFKUaBVL8WgWR0CtYNtb1RLsdX2UKGgGaAloD0MIeuQPBt40cECUhpRSlGgVS/hoFkdArWED2QGOdXV9lChoBmgJaA9DCA6fdCIBnHNAlIaUUpRoFU0QAWgWR0CtYUl36hxpdX2UKGgGaAloD0MIJCu/DEZqckCUhpRSlGgVTQEBaBZHQK1habyYoiN1fZQoaAZoCWgPQwjJdr6fWkpxQJSGlFKUaBVL2GgWR0CtYYpnpSrHdX2UKGgGaAloD0MIrYcvE8UYcUCUhpRSlGgVTQIBaBZHQK1hw6+36RB1fZQoaAZoCWgPQwi+2lGco+5xQJSGlFKUaBVNDQFoFkdArWHUJF9a2XV9lChoBmgJaA9DCLtHNlfNPm9AlIaUUpRoFU0ZAWgWR0CtYjDRD1GtdX2UKGgGaAloD0MIOGkaFI05cECUhpRSlGgVS95oFkdArWI80zj3mHV9lChoBmgJaA9DCAPpYtMK1HJAlIaUUpRoFUv5aBZHQK1igrvLHMl1fZQoaAZoCWgPQwjw37w4cVxxQJSGlFKUaBVNCwFoFkdArWKEOTaCc3V9lChoBmgJaA9DCMuBHmoboHFAlIaUUpRoFU0QAWgWR0CtYxef7JnydX2UKGgGaAloD0MIYMsr19tbckCUhpRSlGgVTRMBaBZHQK1jLnSOR1Z1fZQoaAZoCWgPQwgzbf/KStJyQJSGlFKUaBVL+mgWR0CtY+Bi1AqvdX2UKGgGaAloD0MI2XxcG2rzcECUhpRSlGgVS/poFkdArWP6EeyRjnV9lChoBmgJaA9DCM7/q46cK3JAlIaUUpRoFUvjaBZHQK1kWrmyPdV1fZQoaAZoCWgPQwhQ4nMnWL9vQJSGlFKUaBVNIwFoFkdArWSEt5D7ZXV9lChoBmgJaA9DCET4F0Hjs3JAlIaUUpRoFUvlaBZHQK1ki+jdpIt1fZQoaAZoCWgPQwh/Z3v0hipwQJSGlFKUaBVL+WgWR0CtZIvmHP/rdX2UKGgGaAloD0MIf9k9edj9cECUhpRSlGgVTSABaBZHQK1kwpobn5l1fZQoaAZoCWgPQwh4flGCfvRwQJSGlFKUaBVL7WgWR0CtZN5lWfbsdX2UKGgGaAloD0MIvrwA+6htc0CUhpRSlGgVS9doFkdArWUR77bcoHV9lChoBmgJaA9DCHaKVYNwtHBAlIaUUpRoFU0DAWgWR0CtZTRnFo+OdX2UKGgGaAloD0MIZY7lXTXIcUCUhpRSlGgVS+VoFkdArWWN0zTF2nV9lChoBmgJaA9DCEzdlV0wGW9AlIaUUpRoFUvwaBZHQK1lr95Qgs91fZQoaAZoCWgPQwgqqKj6lRduQJSGlFKUaBVNLgFoFkdArWYjhegL7XV9lChoBmgJaA9DCDp15bO8129AlIaUUpRoFUvsaBZHQK1mP0nPVut1fZQoaAZoCWgPQwhjJ7wEJ0ltQJSGlFKUaBVL62gWR0CtZwf8/D+BdX2UKGgGaAloD0MIAizy60cCc0CUhpRSlGgVTUcBaBZHQK1nrEUj9n91fZQoaAZoCWgPQwhE4EigwXVxQJSGlFKUaBVL/WgWR0CtaAdzfaYedX2UKGgGaAloD0MI5+Jve4IkckCUhpRSlGgVTQoBaBZHQK1xiidJ8OV1fZQoaAZoCWgPQwiWI2QgD4NxQJSGlFKUaBVL7mgWR0CtcY9tEXtTdX2UKGgGaAloD0MILZW3IxxXcECUhpRSlGgVTSwBaBZHQK1xrTWoWHl1fZQoaAZoCWgPQwhf61IjNABwQJSGlFKUaBVNDwFoFkdArXHJFd9lVnV9lChoBmgJaA9DCI4iaw1lE3JAlIaUUpRoFU0CAWgWR0CtcffXf642dX2UKGgGaAloD0MIJo3ROioqckCUhpRSlGgVTSwBaBZHQK1yKc81XNl1fZQoaAZoCWgPQwjZ0M3+gHRwQJSGlFKUaBVNCQFoFkdArXJLm0VrRHV9lChoBmgJaA9DCO9YbJMKJXNAlIaUUpRoFUv+aBZHQK1ySo6S1Vp1fZQoaAZoCWgPQwh5IojzcN5vQJSGlFKUaBVL4GgWR0CtcmMEzO5bdX2UKGgGaAloD0MI+x7112vUc0CUhpRSlGgVS/poFkdArXKQZwXIl3V9lChoBmgJaA9DCFUWhV3Ur3FAlIaUUpRoFUvqaBZHQK1y7EZR8+l1fZQoaAZoCWgPQwgP1v85jItyQJSGlFKUaBVNDgFoFkdArXN6pvP1MHV9lChoBmgJaA9DCOhmf6CchnBAlIaUUpRoFU0OAWgWR0CtdE2w3YL9dX2UKGgGaAloD0MICft2EpGxbkCUhpRSlGgVS/hoFkdArXT9TrE9+3V9lChoBmgJaA9DCPp/1ZHjoHNAlIaUUpRoFU0RAWgWR0CtdQU1AJLNdX2UKGgGaAloD0MIoUyjyYWacUCUhpRSlGgVS/1oFkdArXULDO1OTXV9lChoBmgJaA9DCIBjz55LhXNAlIaUUpRoFUvvaBZHQK11GWGh24d1fZQoaAZoCWgPQwh2ptB5jf1yQJSGlFKUaBVL+WgWR0CtdSINmUW3dX2UKGgGaAloD0MIstXllADCb0CUhpRSlGgVTQYBaBZHQK11LyTY/V11fZQoaAZoCWgPQwi5izBFualxQJSGlFKUaBVL8GgWR0CtdUilrM1TdX2UKGgGaAloD0MIXru04XALc0CUhpRSlGgVS/loFkdArXWvoTwlSnV9lChoBmgJaA9DCGZpp+ayenFAlIaUUpRoFUv7aBZHQK11tMhX8wZ1fZQoaAZoCWgPQwgRixh2GIRzQJSGlFKUaBVNCAFoFkdArXXBjjJdSnV9lChoBmgJaA9DCIGVQ4tscXNAlIaUUpRoFU0XAWgWR0CtdiWKuSwGdX2UKGgGaAloD0MI7lpCPugGcECUhpRSlGgVTQ8BaBZHQK12PgogFHJ1fZQoaAZoCWgPQwgmAWpq2XVtQJSGlFKUaBVL/WgWR0CtdmDUVi4KdX2UKGgGaAloD0MIMjuL3qlkcUCUhpRSlGgVTQkBaBZHQK13EnuRcNZ1fZQoaAZoCWgPQwgEyNCxw2ZwQJSGlFKUaBVL4mgWR0Ctd08hcJMQdX2UKGgGaAloD0MID52ed2PDY0CUhpRSlGgVTegDaBZHQK13ujxkNF11fZQoaAZoCWgPQwjyeFp+4LtwQJSGlFKUaBVL9GgWR0CteCpFb3XadX2UKGgGaAloD0MIs3ixMARocUCUhpRSlGgVTQwBaBZHQK14jOcDr7h1fZQoaAZoCWgPQwjdPxaig0hzQJSGlFKUaBVNCQFoFkdArXicY4yXU3V9lChoBmgJaA9DCJUp5iBoa21AlIaUUpRoFU0aAWgWR0CteMiIcinpdX2UKGgGaAloD0MIbk+Q2G4pbUCUhpRSlGgVS+toFkdArXjYJHAh0XV9lChoBmgJaA9DCCHn/X8cZW9AlIaUUpRoFUvtaBZHQK148aLn9vV1fZQoaAZoCWgPQwiuRnalpcNyQJSGlFKUaBVNEwFoFkdArXjxIMBp6HV9lChoBmgJaA9DCJC+SdNgLnNAlIaUUpRoFU0hAWgWR0CtePFGG21EdX2UKGgGaAloD0MIwVQzaynhckCUhpRSlGgVTSQBaBZHQK15Cj3225R1fZQoaAZoCWgPQwghdqbQ+QtuQJSGlFKUaBVL/GgWR0CteRBnBciXdX2UKGgGaAloD0MI3QvMCsXHcECUhpRSlGgVS/FoFkdArXlQHiWE9XV9lChoBmgJaA9DCIi85epHDXJAlIaUUpRoFU0MAWgWR0CteaqYJE6UdX2UKGgGaAloD0MIa0dxjjoyI0CUhpRSlGgVS89oFkdArXm92mpEQXV9lChoBmgJaA9DCCTVd34Rg3BAlIaUUpRoFU0SAWgWR0CtedwYtQKsdX2UKGgGaAloD0MI3GRUGcbPcECUhpRSlGgVS/toFkdArXrQgLZzxXV9lChoBmgJaA9DCB5ssdsnSnFAlIaUUpRoFU0yAWgWR0Ctey/pD/lydX2UKGgGaAloD0MIvVErTN+3cECUhpRSlGgVS/BoFkdArXt4uPFNtnV9lChoBmgJaA9DCGrBi74CbnJAlIaUUpRoFUvqaBZHQK17xD7ZWaN1fZQoaAZoCWgPQwil2xK54MRvQJSGlFKUaBVL52gWR0Cte9p40Mw2dX2UKGgGaAloD0MIi/uPTAe2ckCUhpRSlGgVTQEBaBZHQK178MAmzB11fZQoaAZoCWgPQwgQrRVtDutuQJSGlFKUaBVL9GgWR0CtfBUmdAgQdX2UKGgGaAloD0MIEoYBSy53cUCUhpRSlGgVTTwBaBZHQK18NOAy2x91fZQoaAZoCWgPQwgRbjKqTPRwQJSGlFKUaBVNJAFoFkdArXxJ9w3o93V9lChoBmgJaA9DCJhtp60RKnJAlIaUUpRoFU0RAWgWR0CtfFO1F6RhdX2UKGgGaAloD0MI0o4bfncCckCUhpRSlGgVTRwBaBZHQK18Xrs0HhV1fZQoaAZoCWgPQwjZQpCDkppvQJSGlFKUaBVL92gWR0CtfHC7sfJWdX2UKGgGaAloD0MIBHKJIw+8bECUhpRSlGgVS+loFkdArXy6KpDNQnV9lChoBmgJaA9DCAmKH2PusGxAlIaUUpRoFU08AWgWR0CtfMqzZ6D5dX2UKGgGaAloD0MIKuW1Err3b0CUhpRSlGgVTQUBaBZHQK189Hc1wYN1fZQoaAZoCWgPQwhqiZXRSOFxQJSGlFKUaBVNJAFoFkdArX18SPEKmnV9lChoBmgJaA9DCI3SpX9JNXJAlIaUUpRoFUvpaBZHQK19uxHoX9B1fZQoaAZoCWgPQwgLnGwD92hwQJSGlFKUaBVL/mgWR0Ctflc4YJmedX2UKGgGaAloD0MInRA66FIHcUCUhpRSlGgVS+poFkdArX64Xj2i+XV9lChoBmgJaA9DCN9rCI5Lxm1AlIaUUpRoFU0EAWgWR0Ctfrix/ustdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LL_01/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89c0ccd2b94d03acf282d32b012a139e43d812a4ad546070edd33b668d4b5e19
|
3 |
+
size 87865
|
LL_01/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76e9b3ad187358aaef2bc8ba0d8d98ec7429f61d3395a709be6a64bb585817cb
|
3 |
+
size 43201
|
LL_01/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LL_01/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 273.70 +/- 23.38
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0635454d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe063545560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0635455f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe063545680>", "_build": "<function ActorCriticPolicy._build at 0x7fe063545710>", "forward": "<function ActorCriticPolicy.forward at 0x7fe0635457a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe063545830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe0635458c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe063545950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0635459e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe063545a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe063582f90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660153079.0115023, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNTDD2FK9s4wH9gvJxSIjwtxQI7EW+8PAAAAAAAAAAAzTpCvKRABLkSk485rJ+tNL+pnrqz+6u4AACAPwAAgD89X8s+qBvbvItanLpLy/c4lMQbvjDSwTkAAIA/AACAP5pMNT2sLMI/ZmpVPr3yCjxGL3q4QifJPQAAAAAAAAAATUdvPYirIT/s+jI+dlhkvjEHKT0Yc+U9AAAAAAAAAAAznXK8j8YZug/5L7oViAS2HvwLuq6cSjkAAIA/AACAP00eSr32zCS6O0QWvCd5yTQAZMS644E1tAAAgD8AAIA/DY+nvSncZ7j3jZ67EcQiNp9hubuppr06AACAPwAAgD+a37G80hZbPny/kr1ctje+7Ew8veKier0AAAAAAAAAAAD4Nz1IY5O64UApucvjozWldrQ4eJ5BOAAAgD8AAIA/EyMBPnikmD889pQ9NPeCvv8xwz3s7Ya9AAAAAAAAAAAAh+q8CgdkuYG+GDt6Bww39hmBuKOy7jUAAIA/AACAPxpMt71WFmg/Rat0vSELkL5mrEm94tpJvAAAAAAAAAAAs7VHvt6OJT+iJ6M8d41zviuyFbzKxzG9AAAAAAAAAACzHok99hB3upqYGzt16aI3YRP+Opq92rkAAIA/AAAAAECUoT4zGU4/dSx4vCCA+L1VjG09mCUSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzemymNhgW0CUhpRSlIwBbJRN6AOMAXSUR0CHJakeIVM3dX2UKGgGaAloD0MIcCcR4V/2XkCUhpRSlGgVTegDaBZHQIcmQw7DEWJ1fZQoaAZoCWgPQwimKQKcXj9hQJSGlFKUaBVN6ANoFkdAhydzakAPu3V9lChoBmgJaA9DCJKXNbHA31xAlIaUUpRoFU3oA2gWR0CHLe2fkFOgdX2UKGgGaAloD0MIpDMw8rLDWkCUhpRSlGgVTegDaBZHQIc2jYXfqHJ1fZQoaAZoCWgPQwhLV7CNeK5AwJSGlFKUaBVL6mgWR0CHRS8mrsBydX2UKGgGaAloD0MI/mFLj6Y3W0CUhpRSlGgVTegDaBZHQIdSPttygf51fZQoaAZoCWgPQwgFa5xNR/BbQJSGlFKUaBVN6ANoFkdAh1ROoxYaHnV9lChoBmgJaA9DCItSQrCqI1tAlIaUUpRoFU3oA2gWR0CHgRDP4VRDdX2UKGgGaAloD0MIiXyXUpf1XkCUhpRSlGgVTegDaBZHQIeE0afjCHh1fZQoaAZoCWgPQwj7H2Ct2gEzwJSGlFKUaBVNGQFoFkdAh4X29+PRzHV9lChoBmgJaA9DCLlTOlj/9VhAlIaUUpRoFU3oA2gWR0CHjJz0Yj0MdX2UKGgGaAloD0MIecpqup7KUUCUhpRSlGgVTegDaBZHQIePEgr6LwZ1fZQoaAZoCWgPQwiBk23gDl1fQJSGlFKUaBVN6ANoFkdAh5ErpiZv1nV9lChoBmgJaA9DCIiE7/0NChPAlIaUUpRoFU0nAWgWR0CHouDPGACodX2UKGgGaAloD0MIeVvptdlSWkCUhpRSlGgVTegDaBZHQIem2P3i7051fZQoaAZoCWgPQwjuCRLb3UNDwJSGlFKUaBVNGgFoFkdAh7hURODaoXV9lChoBmgJaA9DCBkdkIR9NV1AlIaUUpRoFU3oA2gWR0CHuRPnB+F2dX2UKGgGaAloD0MIfGEyVTAbXkCUhpRSlGgVTegDaBZHQIe+Y+2VmjF1fZQoaAZoCWgPQwjjpZvEIPtgQJSGlFKUaBVN6ANoFkdAh8q0nXumanV9lChoBmgJaA9DCBFxcyoZ3DxAlIaUUpRoFU0XAWgWR0CHzWJ+lTFVdX2UKGgGaAloD0MIOgg6WtWfXkCUhpRSlGgVTegDaBZHQIfVkFr2xpt1fZQoaAZoCWgPQwjO/6uOHF1gQJSGlFKUaBVN6ANoFkdAh9ct5dGAkXV9lChoBmgJaA9DCLdgqS7gNFhAlIaUUpRoFU3oA2gWR0CH3QvM8ox6dX2UKGgGaAloD0MISYEFMGWqZUCUhpRSlGgVTegDaBZHQIfziQA+6iF1fZQoaAZoCWgPQwjJjo1AvCVYQJSGlFKUaBVN6ANoFkdAh/90PhAGCHV9lChoBmgJaA9DCLt/LESHOWJAlIaUUpRoFU3oA2gWR0CIB81DSgGsdX2UKGgGaAloD0MIAKq4cYuRXECUhpRSlGgVTegDaBZHQIgwopz90ih1fZQoaAZoCWgPQwg3ABsQIRZXQJSGlFKUaBVN6ANoFkdAiDHI5xR2sHV9lChoBmgJaA9DCPTEc7aAH19AlIaUUpRoFU3oA2gWR0CIN958jRlZdX2UKGgGaAloD0MIDoXP1sG+UkCUhpRSlGgVTegDaBZHQIg6JIBikO91fZQoaAZoCWgPQwjMQdDRqr5dQJSGlFKUaBVN6ANoFkdAiE2Xta6jFnV9lChoBmgJaA9DCMLbgxCQjVZAlIaUUpRoFU3oA2gWR0CIZEJw84gidX2UKGgGaAloD0MIAOFDiZaPYUCUhpRSlGgVTegDaBZHQIhlDjebd8B1fZQoaAZoCWgPQwhj7ISX4OpiQJSGlFKUaBVN6ANoFkdAiGrrq2SdOXV9lChoBmgJaA9DCBNlbynnslxAlIaUUpRoFU3oA2gWR0CIeQgvlEJCdX2UKGgGaAloD0MIzCkBMQlmXUCUhpRSlGgVTegDaBZHQIh8OjGkvbp1fZQoaAZoCWgPQwhgWz/9Z99LQJSGlFKUaBVN6ANoFkdAiIV3L/0dzXV9lChoBmgJaA9DCOl8eJagNmBAlIaUUpRoFU3oA2gWR0CIhzRekYXPdX2UKGgGaAloD0MImSoYlVR2YECUhpRSlGgVTegDaBZHQIiNh4lhPTJ1fZQoaAZoCWgPQwiXyAVn8PM9wJSGlFKUaBVNbQFoFkdAiJd0mD15B3V9lChoBmgJaA9DCOokW13OOGNAlIaUUpRoFU3oA2gWR0CIpKUdJaq0dX2UKGgGaAloD0MIMEYkCi0lXECUhpRSlGgVTegDaBZHQIiw2iBXjlx1fZQoaAZoCWgPQwizzvi+OFpiQJSGlFKUaBVN6ANoFkdAiLmI0Q9RrXV9lChoBmgJaA9DCD+oixTK6V9AlIaUUpRoFU3oA2gWR0CIvTrqt5lfdX2UKGgGaAloD0MIlbpkHCOdW0CUhpRSlGgVTegDaBZHQIjj9GG21D11fZQoaAZoCWgPQwjzH9JvXyFiQJSGlFKUaBVN6ANoFkdAiOn4EW69TXV9lChoBmgJaA9DCAdCsoAJv2BAlIaUUpRoFU3oA2gWR0CI7DKNAC4jdX2UKGgGaAloD0MIZ2X7kLfAWkCUhpRSlGgVTegDaBZHQIj+twWFev91fZQoaAZoCWgPQwhaSMDo8q1gQJSGlFKUaBVNygJoFkdAiQpridat93V9lChoBmgJaA9DCA4QzNHjplRAlIaUUpRoFU3oA2gWR0CJE+1qFh5PdX2UKGgGaAloD0MI8Bge+1lCX0CUhpRSlGgVTegDaBZHQIkZcTN+so51fZQoaAZoCWgPQwgMeQQ30jBkQJSGlFKUaBVN6ANoFkdAiSbej/MnqnV9lChoBmgJaA9DCJBlwcSfwmBAlIaUUpRoFU3oA2gWR0CJKfBu4wyqdX2UKGgGaAloD0MIcOzZc5lcRUCUhpRSlGgVTegDaBZHQIk1VoBaLXN1fZQoaAZoCWgPQwgA/5QqUeJFwJSGlFKUaBVNDgFoFkdAiTtEA5q/NHV9lChoBmgJaA9DCF2lu+tsjGJAlIaUUpRoFU3oA2gWR0CJPN5zHS4OdX2UKGgGaAloD0MIPGpMiLnWTkCUhpRSlGgVTegDaBZHQIlIV7OVxCJ1fZQoaAZoCWgPQwgCKbFre8xdQJSGlFKUaBVN6ANoFkdAiVc6guh9LHV9lChoBmgJaA9DCFQ1QdR9LGJAlIaUUpRoFU3oA2gWR0CJY/31zySWdX2UKGgGaAloD0MIbD1DOGZ7X0CUhpRSlGgVTegDaBZHQIltbmp2ll91fZQoaAZoCWgPQwhNLzGW6UBcQJSGlFKUaBVN6ANoFkdAiXFJyQxN7HV9lChoBmgJaA9DCGjsSzYebFpAlIaUUpRoFU3oA2gWR0CJcmzzErGzdX2UKGgGaAloD0MIoSx8fa07F0CUhpRSlGgVTSsBaBZHQImb15v99+h1fZQoaAZoCWgPQwj+t5IdGxVaQJSGlFKUaBVN6ANoFkdAiZ5gJkXk53V9lChoBmgJaA9DCMKk+PiEfFpAlIaUUpRoFU3oA2gWR0CJoYsDGLk0dX2UKGgGaAloD0MIU5RL4xdiYUCUhpRSlGgVTegDaBZHQIm4IfhddE91fZQoaAZoCWgPQwhqh78maytZQJSGlFKUaBVN6ANoFkdAicP6Rp1zQ3V9lChoBmgJaA9DCD9vKlJhTCHAlIaUUpRoFU09AWgWR0CJzURqXWvsdX2UKGgGaAloD0MIuOf500YiXUCUhpRSlGgVTegDaBZHQInTxa5f+jx1fZQoaAZoCWgPQwiF6ubibxpaQJSGlFKUaBVN6ANoFkdAieGIHC4z8HV9lChoBmgJaA9DCLGLogc+MmJAlIaUUpRoFU3oA2gWR0CJ5HiADq4ZdX2UKGgGaAloD0MIf93pzhP9XkCUhpRSlGgVTegDaBZHQInvRfnfVI91fZQoaAZoCWgPQwgEOShhpsFeQJSGlFKUaBVN6ANoFkdAifSfZM+NcXV9lChoBmgJaA9DCO86G/LPnllAlIaUUpRoFU3oA2gWR0CJ9hfqoqCpdX2UKGgGaAloD0MIr0D0pMwvY0CUhpRSlGgVTegDaBZHQIoPXvfCQ911fZQoaAZoCWgPQwguAfinVBBXQJSGlFKUaBVN6ANoFkdAihx9DYywfXV9lChoBmgJaA9DCGa/7nTnZTVAlIaUUpRoFU1GAWgWR0CKH0FMZgogdX2UKGgGaAloD0MIza/mAEFiaECUhpRSlGgVTegDaBZHQIolbsIE8q51fZQoaAZoCWgPQwgOSS2UTHpZQJSGlFKUaBVN6ANoFkdAiikNO2y9mHV9lChoBmgJaA9DCDMa+bziO2FAlIaUUpRoFU3oA2gWR0CKKiDMeOn3dX2UKGgGaAloD0MI5nXEIRvSXkCUhpRSlGgVTegDaBZHQIot0Re1KGt1fZQoaAZoCWgPQwjVeVT83ytXQJSGlFKUaBVN6ANoFkdAiliBhpg1FnV9lChoBmgJaA9DCIza/SrAMGBAlIaUUpRoFU3oA2gWR0CKbN2Qnx8VdX2UKGgGaAloD0MIRu1+FeAHOkCUhpRSlGgVTQIBaBZHQIp2wdhiLEV1fZQoaAZoCWgPQwi71t6nKm1iQJSGlFKUaBVN6ANoFkdAinjqubI91XV9lChoBmgJaA9DCDo/xXHgUmFAlIaUUpRoFU3oA2gWR0CKgiMH8jzJdX2UKGgGaAloD0MIUDdQ4J2JV0CUhpRSlGgVTegDaBZHQIqILwSamXR1fZQoaAZoCWgPQwjyBwPPvY1bQJSGlFKUaBVN6ANoFkdAipS5jpcHGHV9lChoBmgJaA9DCOyGbYsyxlxAlIaUUpRoFU3oA2gWR0CKl21P3ztkdX2UKGgGaAloD0MIjC/a4wVDYkCUhpRSlGgVTegDaBZHQIqmm6ErXlN1fZQoaAZoCWgPQwinyveMxGxiQJSGlFKUaBVN6ANoFkdAiqgQOvt+kXV9lChoBmgJaA9DCGFrtvKSvxXAlIaUUpRoFU0sAWgWR0CKvI/5ckdFdX2UKGgGaAloD0MIz4O7s3YkX0CUhpRSlGgVTegDaBZHQIq/xdSl3yJ1fZQoaAZoCWgPQwjByMuaWLFcQJSGlFKUaBVN6ANoFkdAisqa+36RAHV9lChoBmgJaA9DCG4Xmus0zGFAlIaUUpRoFU3oA2gWR0CKzPeBxxT9dX2UKGgGaAloD0MIJGJKJNEpW0CUhpRSlGgVTegDaBZHQIrSC4z7/GV1fZQoaAZoCWgPQwj/B1irdnpjQJSGlFKUaBVN6ANoFkdAitUmNzbN8nV9lChoBmgJaA9DCMXnTrD/UVZAlIaUUpRoFU3oA2gWR0CK1jALRa5gdX2UKGgGaAloD0MIP8QGCye/QECUhpRSlGgVS/VoFkdAittWRaHKwXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0635454d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe063545560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0635455f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe063545680>", "_build": "<function ActorCriticPolicy._build at 0x7fe063545710>", "forward": "<function ActorCriticPolicy.forward at 0x7fe0635457a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe063545830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe0635458c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe063545950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0635459e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe063545a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe063582f90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660155101.513271, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPLZrwcxye8yF5mPIGKDj1zWYm9gE/lPQAAgD8AAIA/AMKUPNeVHD/bCvS9EWSuviCYm70r5H87AAAAAAAAAADzWNq9EuFNPlNngj7H84W+dx3JPZtTRLwAAAAAAAAAAJOtCr4MbYc/HRajvglT8r4tu36++90uvgAAAAAAAAAAM0e4PCmxULz1pye+ctmqvXodjz3SuxE/AACAPwAAgD9mgK+86D+3Pdnhsb1ezoe+ii/8vCKtZT0AAAAAAAAAAM1FM709LQC7pf1ouqDFhjwH57Y7iB1qvQAAgD8AAIA/AHxqPON4Xz3advy9HtKOvmsHM72qs4I7AAAAAAAAAADmziK9Ujaku/5zQLtPn388fj8EPdutWr0AAIA/AACAPzPEhjwK3zq7Pt1kvJEnkDxzKH28Cip4PQAAgD8AAIA/mmlzuyUPtz++5Zm9Kz/xPYq/ijsO4Ik8AAAAAAAAAADN40W9TxgCvPubyjyQpmM95/YSPMZPBrsAAIA/AACAP80cnDt/gLM/DmTFPb5WBL7JdbG7h9WwvAAAAAAAAAAAM02TPPv0nz6CuXW9cZK3vmgWabySPzI8AAAAAAAAAAAz6XE8FMCSusO32TpGEew1T1i6Os6l+rkAAIA/AACAPxrCW74cZAk/Oe0CPokewb4aEwe+Ht86PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl43O+Slpc0CUhpRSlIwBbJRNKwGMAXSUR0CtX24u01IidX2UKGgGaAloD0MITWVR2MUtcUCUhpRSlGgVTSMBaBZHQK1fejVQQ+V1fZQoaAZoCWgPQwjG3LWE/JFvQJSGlFKUaBVNDQFoFkdArV+4SL61s3V9lChoBmgJaA9DCMHG9e96UHJAlIaUUpRoFU1JAWgWR0CtX8NFSbYsdX2UKGgGaAloD0MI9NxCV+KQc0CUhpRSlGgVS+hoFkdArWC30oScsnV9lChoBmgJaA9DCIo73uS3M25AlIaUUpRoFU0KAWgWR0CtYLvZqVQidX2UKGgGaAloD0MIOBQ+W4cJcECUhpRSlGgVTQ4BaBZHQK1gz6WPcSJ1fZQoaAZoCWgPQwiwkLkyKHNyQJSGlFKUaBVL8WgWR0CtYNtb1RLsdX2UKGgGaAloD0MIeuQPBt40cECUhpRSlGgVS/hoFkdArWED2QGOdXV9lChoBmgJaA9DCA6fdCIBnHNAlIaUUpRoFU0QAWgWR0CtYUl36hxpdX2UKGgGaAloD0MIJCu/DEZqckCUhpRSlGgVTQEBaBZHQK1habyYoiN1fZQoaAZoCWgPQwjJdr6fWkpxQJSGlFKUaBVL2GgWR0CtYYpnpSrHdX2UKGgGaAloD0MIrYcvE8UYcUCUhpRSlGgVTQIBaBZHQK1hw6+36RB1fZQoaAZoCWgPQwi+2lGco+5xQJSGlFKUaBVNDQFoFkdArWHUJF9a2XV9lChoBmgJaA9DCLtHNlfNPm9AlIaUUpRoFU0ZAWgWR0CtYjDRD1GtdX2UKGgGaAloD0MIOGkaFI05cECUhpRSlGgVS95oFkdArWI80zj3mHV9lChoBmgJaA9DCAPpYtMK1HJAlIaUUpRoFUv5aBZHQK1igrvLHMl1fZQoaAZoCWgPQwjw37w4cVxxQJSGlFKUaBVNCwFoFkdArWKEOTaCc3V9lChoBmgJaA9DCMuBHmoboHFAlIaUUpRoFU0QAWgWR0CtYxef7JnydX2UKGgGaAloD0MIYMsr19tbckCUhpRSlGgVTRMBaBZHQK1jLnSOR1Z1fZQoaAZoCWgPQwgzbf/KStJyQJSGlFKUaBVL+mgWR0CtY+Bi1AqvdX2UKGgGaAloD0MI2XxcG2rzcECUhpRSlGgVS/poFkdArWP6EeyRjnV9lChoBmgJaA9DCM7/q46cK3JAlIaUUpRoFUvjaBZHQK1kWrmyPdV1fZQoaAZoCWgPQwhQ4nMnWL9vQJSGlFKUaBVNIwFoFkdArWSEt5D7ZXV9lChoBmgJaA9DCET4F0Hjs3JAlIaUUpRoFUvlaBZHQK1ki+jdpIt1fZQoaAZoCWgPQwh/Z3v0hipwQJSGlFKUaBVL+WgWR0CtZIvmHP/rdX2UKGgGaAloD0MIf9k9edj9cECUhpRSlGgVTSABaBZHQK1kwpobn5l1fZQoaAZoCWgPQwh4flGCfvRwQJSGlFKUaBVL7WgWR0CtZN5lWfbsdX2UKGgGaAloD0MIvrwA+6htc0CUhpRSlGgVS9doFkdArWUR77bcoHV9lChoBmgJaA9DCHaKVYNwtHBAlIaUUpRoFU0DAWgWR0CtZTRnFo+OdX2UKGgGaAloD0MIZY7lXTXIcUCUhpRSlGgVS+VoFkdArWWN0zTF2nV9lChoBmgJaA9DCEzdlV0wGW9AlIaUUpRoFUvwaBZHQK1lr95Qgs91fZQoaAZoCWgPQwgqqKj6lRduQJSGlFKUaBVNLgFoFkdArWYjhegL7XV9lChoBmgJaA9DCDp15bO8129AlIaUUpRoFUvsaBZHQK1mP0nPVut1fZQoaAZoCWgPQwhjJ7wEJ0ltQJSGlFKUaBVL62gWR0CtZwf8/D+BdX2UKGgGaAloD0MIAizy60cCc0CUhpRSlGgVTUcBaBZHQK1nrEUj9n91fZQoaAZoCWgPQwhE4EigwXVxQJSGlFKUaBVL/WgWR0CtaAdzfaYedX2UKGgGaAloD0MI5+Jve4IkckCUhpRSlGgVTQoBaBZHQK1xiidJ8OV1fZQoaAZoCWgPQwiWI2QgD4NxQJSGlFKUaBVL7mgWR0CtcY9tEXtTdX2UKGgGaAloD0MILZW3IxxXcECUhpRSlGgVTSwBaBZHQK1xrTWoWHl1fZQoaAZoCWgPQwhf61IjNABwQJSGlFKUaBVNDwFoFkdArXHJFd9lVnV9lChoBmgJaA9DCI4iaw1lE3JAlIaUUpRoFU0CAWgWR0CtcffXf642dX2UKGgGaAloD0MIJo3ROioqckCUhpRSlGgVTSwBaBZHQK1yKc81XNl1fZQoaAZoCWgPQwjZ0M3+gHRwQJSGlFKUaBVNCQFoFkdArXJLm0VrRHV9lChoBmgJaA9DCO9YbJMKJXNAlIaUUpRoFUv+aBZHQK1ySo6S1Vp1fZQoaAZoCWgPQwh5IojzcN5vQJSGlFKUaBVL4GgWR0CtcmMEzO5bdX2UKGgGaAloD0MI+x7112vUc0CUhpRSlGgVS/poFkdArXKQZwXIl3V9lChoBmgJaA9DCFUWhV3Ur3FAlIaUUpRoFUvqaBZHQK1y7EZR8+l1fZQoaAZoCWgPQwgP1v85jItyQJSGlFKUaBVNDgFoFkdArXN6pvP1MHV9lChoBmgJaA9DCOhmf6CchnBAlIaUUpRoFU0OAWgWR0CtdE2w3YL9dX2UKGgGaAloD0MICft2EpGxbkCUhpRSlGgVS/hoFkdArXT9TrE9+3V9lChoBmgJaA9DCPp/1ZHjoHNAlIaUUpRoFU0RAWgWR0CtdQU1AJLNdX2UKGgGaAloD0MIoUyjyYWacUCUhpRSlGgVS/1oFkdArXULDO1OTXV9lChoBmgJaA9DCIBjz55LhXNAlIaUUpRoFUvvaBZHQK11GWGh24d1fZQoaAZoCWgPQwh2ptB5jf1yQJSGlFKUaBVL+WgWR0CtdSINmUW3dX2UKGgGaAloD0MIstXllADCb0CUhpRSlGgVTQYBaBZHQK11LyTY/V11fZQoaAZoCWgPQwi5izBFualxQJSGlFKUaBVL8GgWR0CtdUilrM1TdX2UKGgGaAloD0MIXru04XALc0CUhpRSlGgVS/loFkdArXWvoTwlSnV9lChoBmgJaA9DCGZpp+ayenFAlIaUUpRoFUv7aBZHQK11tMhX8wZ1fZQoaAZoCWgPQwgRixh2GIRzQJSGlFKUaBVNCAFoFkdArXXBjjJdSnV9lChoBmgJaA9DCIGVQ4tscXNAlIaUUpRoFU0XAWgWR0CtdiWKuSwGdX2UKGgGaAloD0MI7lpCPugGcECUhpRSlGgVTQ8BaBZHQK12PgogFHJ1fZQoaAZoCWgPQwgmAWpq2XVtQJSGlFKUaBVL/WgWR0CtdmDUVi4KdX2UKGgGaAloD0MIMjuL3qlkcUCUhpRSlGgVTQkBaBZHQK13EnuRcNZ1fZQoaAZoCWgPQwgEyNCxw2ZwQJSGlFKUaBVL4mgWR0Ctd08hcJMQdX2UKGgGaAloD0MID52ed2PDY0CUhpRSlGgVTegDaBZHQK13ujxkNF11fZQoaAZoCWgPQwjyeFp+4LtwQJSGlFKUaBVL9GgWR0CteCpFb3XadX2UKGgGaAloD0MIs3ixMARocUCUhpRSlGgVTQwBaBZHQK14jOcDr7h1fZQoaAZoCWgPQwjdPxaig0hzQJSGlFKUaBVNCQFoFkdArXicY4yXU3V9lChoBmgJaA9DCJUp5iBoa21AlIaUUpRoFU0aAWgWR0CteMiIcinpdX2UKGgGaAloD0MIbk+Q2G4pbUCUhpRSlGgVS+toFkdArXjYJHAh0XV9lChoBmgJaA9DCCHn/X8cZW9AlIaUUpRoFUvtaBZHQK148aLn9vV1fZQoaAZoCWgPQwiuRnalpcNyQJSGlFKUaBVNEwFoFkdArXjxIMBp6HV9lChoBmgJaA9DCJC+SdNgLnNAlIaUUpRoFU0hAWgWR0CtePFGG21EdX2UKGgGaAloD0MIwVQzaynhckCUhpRSlGgVTSQBaBZHQK15Cj3225R1fZQoaAZoCWgPQwghdqbQ+QtuQJSGlFKUaBVL/GgWR0CteRBnBciXdX2UKGgGaAloD0MI3QvMCsXHcECUhpRSlGgVS/FoFkdArXlQHiWE9XV9lChoBmgJaA9DCIi85epHDXJAlIaUUpRoFU0MAWgWR0CteaqYJE6UdX2UKGgGaAloD0MIa0dxjjoyI0CUhpRSlGgVS89oFkdArXm92mpEQXV9lChoBmgJaA9DCCTVd34Rg3BAlIaUUpRoFU0SAWgWR0CtedwYtQKsdX2UKGgGaAloD0MI3GRUGcbPcECUhpRSlGgVS/toFkdArXrQgLZzxXV9lChoBmgJaA9DCB5ssdsnSnFAlIaUUpRoFU0yAWgWR0Ctey/pD/lydX2UKGgGaAloD0MIvVErTN+3cECUhpRSlGgVS/BoFkdArXt4uPFNtnV9lChoBmgJaA9DCGrBi74CbnJAlIaUUpRoFUvqaBZHQK17xD7ZWaN1fZQoaAZoCWgPQwil2xK54MRvQJSGlFKUaBVL52gWR0Cte9p40Mw2dX2UKGgGaAloD0MIi/uPTAe2ckCUhpRSlGgVTQEBaBZHQK178MAmzB11fZQoaAZoCWgPQwgQrRVtDutuQJSGlFKUaBVL9GgWR0CtfBUmdAgQdX2UKGgGaAloD0MIEoYBSy53cUCUhpRSlGgVTTwBaBZHQK18NOAy2x91fZQoaAZoCWgPQwgRbjKqTPRwQJSGlFKUaBVNJAFoFkdArXxJ9w3o93V9lChoBmgJaA9DCJhtp60RKnJAlIaUUpRoFU0RAWgWR0CtfFO1F6RhdX2UKGgGaAloD0MI0o4bfncCckCUhpRSlGgVTRwBaBZHQK18Xrs0HhV1fZQoaAZoCWgPQwjZQpCDkppvQJSGlFKUaBVL92gWR0CtfHC7sfJWdX2UKGgGaAloD0MIBHKJIw+8bECUhpRSlGgVS+loFkdArXy6KpDNQnV9lChoBmgJaA9DCAmKH2PusGxAlIaUUpRoFU08AWgWR0CtfMqzZ6D5dX2UKGgGaAloD0MIKuW1Err3b0CUhpRSlGgVTQUBaBZHQK189Hc1wYN1fZQoaAZoCWgPQwhqiZXRSOFxQJSGlFKUaBVNJAFoFkdArX18SPEKmnV9lChoBmgJaA9DCI3SpX9JNXJAlIaUUpRoFUvpaBZHQK19uxHoX9B1fZQoaAZoCWgPQwgLnGwD92hwQJSGlFKUaBVL/mgWR0Ctflc4YJmedX2UKGgGaAloD0MInRA66FIHcUCUhpRSlGgVS+poFkdArX64Xj2i+XV9lChoBmgJaA9DCN9rCI5Lxm1AlIaUUpRoFU0EAWgWR0Ctfrix/ustdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 273.7033466615157, "std_reward": 23.377906024713944, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-10T18:39:48.324530"}
|