layoutlm-sroie-dacn
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1268
- Address: {'precision': 0.9905708460754332, 'recall': 0.9948809828512926, 'f1': 0.9927212361128847, 'number': 3907}
- Company: {'precision': 0.9704530531845043, 'recall': 0.9912810194500336, 'f1': 0.9807564698075647, 'number': 1491}
- Date: {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428}
- Total: {'precision': 0.8861788617886179, 'recall': 0.8814016172506739, 'f1': 0.8837837837837837, 'number': 371}
- Overall Precision: 0.9801
- Overall Recall: 0.9871
- Overall F1: 0.9836
- Overall Accuracy: 0.9950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- label_smoothing_factor: 0.02
Training results
Training Loss | Epoch | Step | Validation Loss | Address | Company | Date | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3877 | 1.0 | 40 | 0.1597 | {'precision': 0.9882921863069484, 'recall': 0.993857179421551, 'f1': 0.9910668708524758, 'number': 3907} | {'precision': 0.8616279069767442, 'recall': 0.993963782696177, 'f1': 0.9230769230769231, 'number': 1491} | {'precision': 0.838, 'recall': 0.9789719626168224, 'f1': 0.9030172413793104, 'number': 428} | {'precision': 0.9090909090909091, 'recall': 0.026954177897574125, 'f1': 0.05235602094240838, 'number': 371} | 0.9406 | 0.9350 | 0.9378 | 0.9812 |
0.1439 | 2.0 | 80 | 0.1310 | {'precision': 0.9940934771443246, 'recall': 0.9907857691323266, 'f1': 0.9924368670683246, 'number': 3907} | {'precision': 0.9517994858611826, 'recall': 0.9932930918846412, 'f1': 0.9721037085658024, 'number': 1491} | {'precision': 0.9789719626168224, 'recall': 0.9789719626168224, 'f1': 0.9789719626168224, 'number': 428} | {'precision': 0.7128205128205128, 'recall': 0.7493261455525606, 'f1': 0.7306176084099868, 'number': 371} | 0.9651 | 0.9761 | 0.9706 | 0.9911 |
0.1267 | 3.0 | 120 | 0.1283 | {'precision': 0.9890557393738865, 'recall': 0.9946250319938572, 'f1': 0.9918325676365493, 'number': 3907} | {'precision': 0.9647979139504563, 'recall': 0.9926224010731053, 'f1': 0.978512396694215, 'number': 1491} | {'precision': 0.9952718676122931, 'recall': 0.9836448598130841, 'f1': 0.9894242068155112, 'number': 428} | {'precision': 0.783375314861461, 'recall': 0.8382749326145552, 'f1': 0.8098958333333334, 'number': 371} | 0.9706 | 0.9840 | 0.9772 | 0.9931 |
0.12 | 4.0 | 160 | 0.1280 | {'precision': 0.984070796460177, 'recall': 0.9961607371384694, 'f1': 0.9900788603408802, 'number': 3907} | {'precision': 0.9678899082568807, 'recall': 0.9906103286384976, 'f1': 0.9791183294663572, 'number': 1491} | {'precision': 0.9929411764705882, 'recall': 0.985981308411215, 'f1': 0.9894490035169988, 'number': 428} | {'precision': 0.8219895287958116, 'recall': 0.8463611859838275, 'f1': 0.8339973439575034, 'number': 371} | 0.9709 | 0.9852 | 0.9780 | 0.9932 |
0.1167 | 5.0 | 200 | 0.1254 | {'precision': 0.9903061224489796, 'recall': 0.9936012285641157, 'f1': 0.9919509390571101, 'number': 3907} | {'precision': 0.9692206941715783, 'recall': 0.9926224010731053, 'f1': 0.9807819748177601, 'number': 1491} | {'precision': 0.9929411764705882, 'recall': 0.985981308411215, 'f1': 0.9894490035169988, 'number': 428} | {'precision': 0.8445040214477212, 'recall': 0.8490566037735849, 'f1': 0.8467741935483872, 'number': 371} | 0.9766 | 0.9842 | 0.9804 | 0.9940 |
0.1128 | 6.0 | 240 | 0.1273 | {'precision': 0.9865584580268831, 'recall': 0.9956488354235987, 'f1': 0.9910828025477707, 'number': 3907} | {'precision': 0.9698952879581152, 'recall': 0.993963782696177, 'f1': 0.9817820470354421, 'number': 1491} | {'precision': 1.0, 'recall': 0.9789719626168224, 'f1': 0.9893742621015349, 'number': 428} | {'precision': 0.8575268817204301, 'recall': 0.8598382749326146, 'f1': 0.8586810228802152, 'number': 371} | 0.9757 | 0.9860 | 0.9808 | 0.9941 |
0.1119 | 7.0 | 280 | 0.1250 | {'precision': 0.9943604204050244, 'recall': 0.9928333759918095, 'f1': 0.9935963114754098, 'number': 3907} | {'precision': 0.9717477003942181, 'recall': 0.9919517102615694, 'f1': 0.9817457683372054, 'number': 1491} | {'precision': 0.9976415094339622, 'recall': 0.9883177570093458, 'f1': 0.9929577464788731, 'number': 428} | {'precision': 0.9037900874635568, 'recall': 0.8355795148247979, 'f1': 0.8683473389355741, 'number': 371} | 0.9840 | 0.9829 | 0.9835 | 0.9950 |
0.1111 | 8.0 | 320 | 0.1264 | {'precision': 0.9900586286005608, 'recall': 0.9941131302789864, 'f1': 0.9920817369093232, 'number': 3907} | {'precision': 0.9654498044328553, 'recall': 0.9932930918846412, 'f1': 0.9791735537190083, 'number': 1491} | {'precision': 0.9953161592505855, 'recall': 0.9929906542056075, 'f1': 0.9941520467836257, 'number': 428} | {'precision': 0.8904494382022472, 'recall': 0.8544474393530997, 'f1': 0.8720770288858323, 'number': 371} | 0.9787 | 0.9855 | 0.9821 | 0.9946 |
0.1097 | 9.0 | 360 | 0.1264 | {'precision': 0.9890529531568228, 'recall': 0.9943690811364219, 'f1': 0.9917038927887685, 'number': 3907} | {'precision': 0.9679738562091503, 'recall': 0.9932930918846412, 'f1': 0.9804700430321085, 'number': 1491} | {'precision': 1.0, 'recall': 0.9883177570093458, 'f1': 0.9941245593419507, 'number': 428} | {'precision': 0.8919667590027701, 'recall': 0.8679245283018868, 'f1': 0.8797814207650273, 'number': 371} | 0.9790 | 0.9861 | 0.9826 | 0.9947 |
0.1091 | 10.0 | 400 | 0.1256 | {'precision': 0.9918346516968615, 'recall': 0.9948809828512926, 'f1': 0.9933554817275747, 'number': 3907} | {'precision': 0.972972972972973, 'recall': 0.9899396378269618, 'f1': 0.9813829787234043, 'number': 1491} | {'precision': 1.0, 'recall': 0.9906542056074766, 'f1': 0.9953051643192489, 'number': 428} | {'precision': 0.898876404494382, 'recall': 0.862533692722372, 'f1': 0.8803301237964237, 'number': 371} | 0.9825 | 0.9855 | 0.9840 | 0.9951 |
0.1085 | 11.0 | 440 | 0.1270 | {'precision': 0.9913287426676868, 'recall': 0.9948809828512926, 'f1': 0.9931016862544711, 'number': 3907} | {'precision': 0.9673416067929458, 'recall': 0.9932930918846412, 'f1': 0.9801455989410985, 'number': 1491} | {'precision': 1.0, 'recall': 0.9906542056074766, 'f1': 0.9953051643192489, 'number': 428} | {'precision': 0.8828337874659401, 'recall': 0.8733153638814016, 'f1': 0.878048780487805, 'number': 371} | 0.9797 | 0.9869 | 0.9833 | 0.9949 |
0.1089 | 12.0 | 480 | 0.1263 | {'precision': 0.9903184713375797, 'recall': 0.9948809828512926, 'f1': 0.9925944841675179, 'number': 3907} | {'precision': 0.969301110385369, 'recall': 0.9953051643192489, 'f1': 0.9821310390469887, 'number': 1491} | {'precision': 1.0, 'recall': 0.9906542056074766, 'f1': 0.9953051643192489, 'number': 428} | {'precision': 0.905982905982906, 'recall': 0.8571428571428571, 'f1': 0.8808864265927977, 'number': 371} | 0.9811 | 0.9864 | 0.9837 | 0.9950 |
0.1081 | 13.0 | 520 | 0.1258 | {'precision': 0.9913287426676868, 'recall': 0.9948809828512926, 'f1': 0.9931016862544711, 'number': 3907} | {'precision': 0.9711475409836066, 'recall': 0.9932930918846412, 'f1': 0.9820954907161804, 'number': 1491} | {'precision': 1.0, 'recall': 0.9906542056074766, 'f1': 0.9953051643192489, 'number': 428} | {'precision': 0.8885869565217391, 'recall': 0.8814016172506739, 'f1': 0.884979702300406, 'number': 371} | 0.9809 | 0.9874 | 0.9842 | 0.9952 |
0.1081 | 14.0 | 560 | 0.1275 | {'precision': 0.9903184713375797, 'recall': 0.9948809828512926, 'f1': 0.9925944841675179, 'number': 3907} | {'precision': 0.9655172413793104, 'recall': 0.9953051643192489, 'f1': 0.9801849405548217, 'number': 1491} | {'precision': 1.0, 'recall': 0.9906542056074766, 'f1': 0.9953051643192489, 'number': 428} | {'precision': 0.8837837837837837, 'recall': 0.8814016172506739, 'f1': 0.8825910931174089, 'number': 371} | 0.9786 | 0.9879 | 0.9832 | 0.9949 |
0.108 | 15.0 | 600 | 0.1276 | {'precision': 0.9900662251655629, 'recall': 0.9948809828512926, 'f1': 0.992467764585727, 'number': 3907} | {'precision': 0.961139896373057, 'recall': 0.9953051643192489, 'f1': 0.9779242174629325, 'number': 1491} | {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428} | {'precision': 0.8937329700272479, 'recall': 0.8840970350404312, 'f1': 0.888888888888889, 'number': 371} | 0.9780 | 0.9882 | 0.9831 | 0.9948 |
0.1077 | 16.0 | 640 | 0.1268 | {'precision': 0.9900662251655629, 'recall': 0.9948809828512926, 'f1': 0.992467764585727, 'number': 3907} | {'precision': 0.965472312703583, 'recall': 0.993963782696177, 'f1': 0.9795109054857898, 'number': 1491} | {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428} | {'precision': 0.8885869565217391, 'recall': 0.8814016172506739, 'f1': 0.884979702300406, 'number': 371} | 0.9787 | 0.9877 | 0.9832 | 0.9949 |
0.1074 | 17.0 | 680 | 0.1266 | {'precision': 0.9903184713375797, 'recall': 0.9948809828512926, 'f1': 0.9925944841675179, 'number': 3907} | {'precision': 0.9679529103989536, 'recall': 0.9926224010731053, 'f1': 0.980132450331126, 'number': 1491} | {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428} | {'precision': 0.8922651933701657, 'recall': 0.8706199460916442, 'f1': 0.8813096862210095, 'number': 371} | 0.9798 | 0.9868 | 0.9833 | 0.9949 |
0.1072 | 18.0 | 720 | 0.1266 | {'precision': 0.9905708460754332, 'recall': 0.9948809828512926, 'f1': 0.9927212361128847, 'number': 3907} | {'precision': 0.9710716633793557, 'recall': 0.9906103286384976, 'f1': 0.9807436918990704, 'number': 1491} | {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428} | {'precision': 0.8814016172506739, 'recall': 0.8814016172506739, 'f1': 0.8814016172506739, 'number': 371} | 0.9800 | 0.9869 | 0.9834 | 0.9950 |
0.1071 | 19.0 | 760 | 0.1266 | {'precision': 0.9905708460754332, 'recall': 0.9948809828512926, 'f1': 0.9927212361128847, 'number': 3907} | {'precision': 0.9704530531845043, 'recall': 0.9912810194500336, 'f1': 0.9807564698075647, 'number': 1491} | {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428} | {'precision': 0.8858695652173914, 'recall': 0.8787061994609164, 'f1': 0.8822733423545331, 'number': 371} | 0.9801 | 0.9869 | 0.9835 | 0.9950 |
0.1076 | 20.0 | 800 | 0.1268 | {'precision': 0.9905708460754332, 'recall': 0.9948809828512926, 'f1': 0.9927212361128847, 'number': 3907} | {'precision': 0.9704530531845043, 'recall': 0.9912810194500336, 'f1': 0.9807564698075647, 'number': 1491} | {'precision': 1.0, 'recall': 0.9929906542056075, 'f1': 0.9964830011723329, 'number': 428} | {'precision': 0.8861788617886179, 'recall': 0.8814016172506739, 'f1': 0.8837837837837837, 'number': 371} | 0.9801 | 0.9871 | 0.9836 | 0.9950 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.13.3
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.