layoutlm-sroie / README.md
trng1305's picture
End of training
677cf00
metadata
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-sroie
    results: []

layoutlm-sroie

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0325
  • Address: {'precision': 0.9044943820224719, 'recall': 0.9279538904899135, 'f1': 0.9160739687055477, 'number': 347}
  • Company: {'precision': 0.9196675900277008, 'recall': 0.9567723342939481, 'f1': 0.9378531073446328, 'number': 347}
  • Date: {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347}
  • Total: {'precision': 0.8913649025069638, 'recall': 0.9221902017291066, 'f1': 0.9065155807365438, 'number': 347}
  • Overall Precision: 0.9242
  • Overall Recall: 0.9488
  • Overall F1: 0.9364
  • Overall Accuracy: 0.9947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Address Company Date Total Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4787 1.0 40 0.1051 {'precision': 0.8115183246073299, 'recall': 0.8933717579250721, 'f1': 0.850480109739369, 'number': 347} {'precision': 0.6813725490196079, 'recall': 0.8011527377521613, 'f1': 0.7364238410596026, 'number': 347} {'precision': 0.7438423645320197, 'recall': 0.8703170028818443, 'f1': 0.8021248339973439, 'number': 347} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 347} 0.7441 0.6412 0.6889 0.9705
0.0698 2.0 80 0.0453 {'precision': 0.848, 'recall': 0.9164265129682997, 'f1': 0.8808864265927978, 'number': 347} {'precision': 0.8080808080808081, 'recall': 0.9221902017291066, 'f1': 0.8613728129205921, 'number': 347} {'precision': 0.9281767955801105, 'recall': 0.968299711815562, 'f1': 0.9478138222849083, 'number': 347} {'precision': 0.6992481203007519, 'recall': 0.8040345821325648, 'f1': 0.7479892761394101, 'number': 347} 0.8179 0.9027 0.8582 0.9882
0.0326 3.0 120 0.0317 {'precision': 0.8763736263736264, 'recall': 0.9193083573487032, 'f1': 0.8973277074542897, 'number': 347} {'precision': 0.888283378746594, 'recall': 0.9394812680115274, 'f1': 0.9131652661064427, 'number': 347} {'precision': 0.9713467048710601, 'recall': 0.9769452449567724, 'f1': 0.9741379310344828, 'number': 347} {'precision': 0.8259668508287292, 'recall': 0.861671469740634, 'f1': 0.8434414668547249, 'number': 347} 0.8897 0.9244 0.9067 0.9928
0.0222 4.0 160 0.0333 {'precision': 0.8922651933701657, 'recall': 0.930835734870317, 'f1': 0.9111424541607898, 'number': 347} {'precision': 0.8983516483516484, 'recall': 0.9423631123919308, 'f1': 0.919831223628692, 'number': 347} {'precision': 0.9912280701754386, 'recall': 0.9769452449567724, 'f1': 0.9840348330914369, 'number': 347} {'precision': 0.7348837209302326, 'recall': 0.9106628242074928, 'f1': 0.8133848133848134, 'number': 347} 0.8712 0.9402 0.9044 0.9921
0.0185 5.0 200 0.0288 {'precision': 0.9209039548022598, 'recall': 0.9394812680115274, 'f1': 0.9300998573466476, 'number': 347} {'precision': 0.8856382978723404, 'recall': 0.9596541786743515, 'f1': 0.921161825726141, 'number': 347} {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} {'precision': 0.8547945205479452, 'recall': 0.899135446685879, 'f1': 0.8764044943820225, 'number': 347} 0.9118 0.9460 0.9286 0.9938
0.0141 6.0 240 0.0269 {'precision': 0.8991596638655462, 'recall': 0.9250720461095101, 'f1': 0.9119318181818182, 'number': 347} {'precision': 0.9108635097493036, 'recall': 0.9423631123919308, 'f1': 0.926345609065156, 'number': 347} {'precision': 0.9884393063583815, 'recall': 0.9855907780979827, 'f1': 0.987012987012987, 'number': 347} {'precision': 0.8795518207282913, 'recall': 0.9048991354466859, 'f1': 0.8920454545454546, 'number': 347} 0.9190 0.9395 0.9291 0.9944
0.0117 7.0 280 0.0281 {'precision': 0.9178470254957507, 'recall': 0.9337175792507204, 'f1': 0.9257142857142857, 'number': 347} {'precision': 0.9138888888888889, 'recall': 0.9481268011527377, 'f1': 0.9306930693069307, 'number': 347} {'precision': 0.9855907780979827, 'recall': 0.9855907780979827, 'f1': 0.9855907780979827, 'number': 347} {'precision': 0.8985507246376812, 'recall': 0.8933717579250721, 'f1': 0.8959537572254335, 'number': 347} 0.9288 0.9402 0.9345 0.9945
0.0104 8.0 320 0.0313 {'precision': 0.9101123595505618, 'recall': 0.9337175792507204, 'f1': 0.9217638691322901, 'number': 347} {'precision': 0.9043715846994536, 'recall': 0.9538904899135446, 'f1': 0.9284712482468442, 'number': 347} {'precision': 0.9717514124293786, 'recall': 0.9913544668587896, 'f1': 0.9814550641940086, 'number': 347} {'precision': 0.868632707774799, 'recall': 0.9337175792507204, 'f1': 0.8999999999999999, 'number': 347} 0.9130 0.9532 0.9327 0.9941
0.009 9.0 360 0.0282 {'precision': 0.9204545454545454, 'recall': 0.9337175792507204, 'f1': 0.927038626609442, 'number': 347} {'precision': 0.9171270718232044, 'recall': 0.9567723342939481, 'f1': 0.9365303244005642, 'number': 347} {'precision': 0.9828571428571429, 'recall': 0.9913544668587896, 'f1': 0.9870875179340028, 'number': 347} {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} 0.9269 0.9503 0.9385 0.9949
0.0081 10.0 400 0.0313 {'precision': 0.9047619047619048, 'recall': 0.930835734870317, 'f1': 0.9176136363636365, 'number': 347} {'precision': 0.9217877094972067, 'recall': 0.9510086455331412, 'f1': 0.9361702127659575, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.8974358974358975, 'recall': 0.9077809798270894, 'f1': 0.9025787965616047, 'number': 347} 0.9265 0.9445 0.9354 0.9945
0.0064 11.0 440 0.0318 {'precision': 0.9047619047619048, 'recall': 0.930835734870317, 'f1': 0.9176136363636365, 'number': 347} {'precision': 0.9138888888888889, 'recall': 0.9481268011527377, 'f1': 0.9306930693069307, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.8791208791208791, 'recall': 0.9221902017291066, 'f1': 0.90014064697609, 'number': 347} 0.9196 0.9474 0.9333 0.9944
0.0063 12.0 480 0.0335 {'precision': 0.8994413407821229, 'recall': 0.9279538904899135, 'f1': 0.9134751773049646, 'number': 347} {'precision': 0.9088397790055248, 'recall': 0.9481268011527377, 'f1': 0.928067700987306, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.8839779005524862, 'recall': 0.9221902017291066, 'f1': 0.9026798307475318, 'number': 347} 0.9182 0.9467 0.9322 0.9943
0.0054 13.0 520 0.0312 {'precision': 0.9070422535211268, 'recall': 0.9279538904899135, 'f1': 0.9173789173789173, 'number': 347} {'precision': 0.9194444444444444, 'recall': 0.9538904899135446, 'f1': 0.9363507779349363, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.8839779005524862, 'recall': 0.9221902017291066, 'f1': 0.9026798307475318, 'number': 347} 0.9229 0.9481 0.9353 0.9947
0.0054 14.0 560 0.0326 {'precision': 0.9044943820224719, 'recall': 0.9279538904899135, 'f1': 0.9160739687055477, 'number': 347} {'precision': 0.9222222222222223, 'recall': 0.9567723342939481, 'f1': 0.9391796322489392, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.8910614525139665, 'recall': 0.9193083573487032, 'f1': 0.9049645390070922, 'number': 347} 0.9248 0.9481 0.9363 0.9946
0.0048 15.0 600 0.0325 {'precision': 0.9044943820224719, 'recall': 0.9279538904899135, 'f1': 0.9160739687055477, 'number': 347} {'precision': 0.9196675900277008, 'recall': 0.9567723342939481, 'f1': 0.9378531073446328, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.8913649025069638, 'recall': 0.9221902017291066, 'f1': 0.9065155807365438, 'number': 347} 0.9242 0.9488 0.9364 0.9947

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.13.3