--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - trung0209/autotrain-data-rumi-bert-large-case co2_eq_emissions: emissions: 0.8802978764048797 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 73218139171 - CO2 Emissions (in grams): 0.8803 ## Validation Metrics - Loss: 0.285 - Accuracy: 0.938 - Macro F1: 0.935 - Micro F1: 0.938 - Weighted F1: 0.938 - Macro Precision: 0.947 - Micro Precision: 0.938 - Weighted Precision: 0.941 - Macro Recall: 0.929 - Micro Recall: 0.938 - Weighted Recall: 0.938 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/trung0209/autotrain-rumi-bert-large-case-73218139171 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("trung0209/autotrain-rumi-bert-large-case-73218139171", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("trung0209/autotrain-rumi-bert-large-case-73218139171", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```