File size: 2,214 Bytes
f24051f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Summary4500_M2_750steps_1e5rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Summary4500_M2_750steps_1e5rate_SFT
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4197
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 750
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4687 | 0.0447 | 50 | 0.5176 |
| 0.5069 | 0.0895 | 100 | 0.5367 |
| 0.5289 | 0.1342 | 150 | 0.5178 |
| 0.4896 | 0.1790 | 200 | 0.5124 |
| 0.4982 | 0.2237 | 250 | 0.5096 |
| 0.4595 | 0.2685 | 300 | 0.5040 |
| 0.4998 | 0.3132 | 350 | 0.4854 |
| 0.4571 | 0.3579 | 400 | 0.4713 |
| 0.4477 | 0.4027 | 450 | 0.4577 |
| 0.4286 | 0.4474 | 500 | 0.4466 |
| 0.4113 | 0.4922 | 550 | 0.4338 |
| 0.4044 | 0.5369 | 600 | 0.4262 |
| 0.3802 | 0.5817 | 650 | 0.4213 |
| 0.4059 | 0.6264 | 700 | 0.4199 |
| 0.4289 | 0.6711 | 750 | 0.4197 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
|