--- title: "ToxicHermes-2.5-Mistral-7B Quantized in GGUF" tags: - GGUF language: en --- # GGUF's of ToxicHermes-2.5-Mistral-7B This is a GGUF quantization of ToxicHermes-2.5-Mistral-7B. ## Original Model Card: ## ToxicHermes [OpenHermes-2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model + [toxic-dpo](https://huggingface.co/datasets/unalignment/toxic-dpo-v0.1?not-for-all-audiences=true) Dataset = ToxicHermes fine-tuned with Direct Preference Optimization (DPO) - Base Model: [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) - Dataset: [unalignment/toxic-dpo-v0.1](https://huggingface.co/datasets/unalignment/toxic-dpo-v0.1) ## Usage You can also run this model using the following code: ```python import transformers from transformers import AutoTokenizer model = "joey00072/ToxicHermes-2.5-Mistral-7B" # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ## Training hyperparameters **LoRA**: * r=16 * lora_alpha=16 * lora_dropout=0.05 * bias="none" * task_type="CAUSAL_LM" * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=4 * gradient_accumulation_steps=4 * gradient_checkpointing=True * learning_rate=5e-5 * lr_scheduler_type="cosine" * max_steps=200 * optim="paged_adamw_32bit" * warmup_steps=100 **DPOTrainer**: * beta=0.1 * max_prompt_length=1024 * max_length=1536