File size: 4,779 Bytes
100ea29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: mit
---
## MIRAGE
**Model Type:** MIRAGE is an innovative open-source visual-RAG model capable of processing over 10,000 images as input. It integrates a retriever and a large multimodal model (LMM) for enhanced performance.
**Key Features:**
- **Compressor:** Reduces data size by compressing image tokens by 18x per image, enabling efficient handling of large datasets.
- **Query-Aware Retriever:** Dynamically filters out irrelevant images to focus processing power on content that enhances task performance.
- **Multi-Image LMM:** Features a tailored pretraining and instruction tuning dataset, designed to optimize model performance across a range of multimodal tasks.
**Performance:**
- MIRAGE establishes a new benchmark in open-source performance on the [Visual Haystacks (VHs) benchmark](https://huggingface.co/datasets/tsunghanwu/visual_haystacks).
- Delivers robust results across various single- and multi-image question answering tasks, such as RETVQA, MMBench, MMVet, VQAv2, and more.
**Usage:**
Please refer to the installation guide on our GitHub repository to get started with MIRAGE: [Installation Guide](https://github.com/visual-haystacks/mirage)
**Additional Resources:**
For detailed information and updates, visit our project page: [Visual Haystacks Project](https://visual-haystacks.github.io/)
**Support:**
For questions or comments about the model, please open an issue on our GitHub page: [GitHub Issues](https://github.com/visual-haystacks/mirage/issues)
**Intended Use:**
MIRAGE is primarily intended for research into large multimodal models (LMMs), long-context modeling, and retrieval-augmented generation (RAG).
### Example Usage Code
```python
from PIL import Image
import argparse
import torch
import os
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from llava.utils import disable_torch_init
@torch.inference_mode()
def run(model_path, image_paths, prompt, num_retrievals=1):
'''
Executes MIRAGE with specified inputs to generate descriptive text based on the provided images.
Args:
model_path (str): Path to the MIRAGE model, e.g., 'tsunghanwu/mirage-llama3.1-8.3B'
image_paths (list): List of paths to image files, e.g., images in 'assets/example'
prompt (str): Text prompt for image description, e.g., 'Here are a set of random images in my photo album.
If you can find a cat, tell me what's the cat doing and what's its color.'
num_retrievals (int): Maximum number of images to retrieve and pass to the LMM
Returns:
output_text (str): Descriptive text generated by the LMM
output_ret (list): List of images retrieved by the model
'''
# Load the model and prepare the environment
model_name = get_model_name_from_path(model_path)
disable_torch_init()
model_name = os.path.expanduser(model_name)
tokenizer, model, image_processor, _ = \
load_pretrained_model(model_path=model_path, model_base=None, model_name=model_name, device="cuda")
model.eval_mode = True
# Process the images
clip_images = []
for image_path in image_paths:
image = Image.open(image_path). convert("RGB")
image_tensor = process_images([image], image_processor, model.config)[0]
image_tensor = image_tensor.to(dtype=torch.float16)
clip_images.append(image_tensor)
# Prepare text input and interaction
qformer_text_input = tokenizer(prompt, return_tensors='pt')["input_ids"].to(model.device)
N = len(clip_images)
img_str = DEFAULT_IMAGE_TOKEN * N + "\n"
inp = img_str + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# Generate model output
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
tokenizer.pad_token_id = 128002
batch_clip_images = [torch.stack(clip_images).to(model.device)]
output_ret, output_ids = model.generate(
input_ids,
pad_token_id=tokenizer.pad_token_id,
clip_images=batch_clip_images,
qformer_text_input=qformer_text_input,
relevance=None,
num_retrieval=num_retrievals,
do_sample=False,
max_new_tokens=512,
use_cache=True)
# Process output
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
if not isinstance(output_ret[0], list):
output_ret[0] = output_ret[0].tolist()
return output_text, output_ret[0]
``` |