tthhanh commited on
Commit
16ad5b0
·
1 Parent(s): 13cf8ce

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: cc-by-nc-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ model-index:
10
+ - name: xlm-ate-nobi-nl-nes
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # xlm-ate-nobi-nl-nes
18
+
19
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.4378
22
+ - Precision: 0.7351
23
+ - Recall: 0.3685
24
+ - F1: 0.4909
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 32
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 20
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
54
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
55
+ | 0.149 | 2.98 | 500 | 0.8246 | 0.7421 | 0.3484 | 0.4742 |
56
+ | 0.0395 | 5.95 | 1000 | 0.9936 | 0.7356 | 0.4126 | 0.5286 |
57
+ | 0.0175 | 8.93 | 1500 | 1.1576 | 0.7169 | 0.3854 | 0.5013 |
58
+ | 0.0086 | 11.9 | 2000 | 1.3431 | 0.7321 | 0.3646 | 0.4868 |
59
+ | 0.0054 | 14.88 | 2500 | 1.3987 | 0.7297 | 0.3601 | 0.4822 |
60
+ | 0.0032 | 17.86 | 3000 | 1.4378 | 0.7351 | 0.3685 | 0.4909 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.26.1
66
+ - Pytorch 2.0.1+cu117
67
+ - Datasets 2.9.0
68
+ - Tokenizers 0.13.2