--- base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B datasets: - tttx/problem0_data - barc0/transduction_formatted_rearc_dataset_100k - barc0/transduction_heavy_100k_jsonl library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning results: [] --- # engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem0_data, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0016 | 1.0 | 1 | 0.0005 | | 0.0014 | 2.0 | 2 | 0.0001 | | 0.0001 | 3.0 | 3 | 0.0001 | | 0.0001 | 4.0 | 4 | 0.0000 | | 0.0 | 5.0 | 5 | 0.0000 | | 0.0 | 6.0 | 6 | 0.0000 | | 0.0 | 7.0 | 7 | 0.0000 | | 0.0 | 8.0 | 8 | 0.0000 | | 0.0 | 9.0 | 9 | 0.0000 | | 0.0 | 10.0 | 10 | 0.0000 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1