solider_base_224 / modeling_solider.py
tuandunghcmut's picture
Upload model
2e19bed verified
import os
import warnings
from collections import OrderedDict
from copy import deepcopy
import logging
import math
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
import numpy as np
import cv2
from dataclasses import dataclass
from transformers import PreTrainedModel, PretrainedConfig
from transformers import PretrainedConfig
# from .lavis_base_model import BaseEncoder
# from lavis.common.registry import registry
from torch.nn import Module as BaseModule
from torch.nn import ModuleList
from torch.nn import Sequential
from torch.nn import Linear
from torch import Tensor
from itertools import repeat
import collections.abc
from .configuration_solider import SOLIDERConfig, BACKBONE_NAME2WIDTH
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
def trunc_normal_init(
module: nn.Module,
mean: float = 0,
std: float = 1,
a: float = -2,
b: float = 2,
bias: float = 0,
) -> None:
if hasattr(module, "weight") and module.weight is not None:
# trunc_normal_(module.weight, mean, std, a, b) # type: ignore
_no_grad_trunc_normal_(module.weight, mean, std, a, b) # type: ignore
if hasattr(module, "bias") and module.bias is not None:
nn.init.constant_(module.bias, bias) # type: ignore
def _no_grad_trunc_normal_(
tensor: Tensor, mean: float, std: float, a: float, b: float
) -> Tensor:
# Method based on
# https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
# Modified from
# https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
lower = norm_cdf((a - mean) / std)
upper = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [lower, upper], then translate
# to [2lower-1, 2upper-1].
tensor.uniform_(2 * lower - 1, 2 * upper - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(
tensor: Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> Tensor:
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Modified from
https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
Args:
tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`.
mean (float): the mean of the normal distribution.
std (float): the standard deviation of the normal distribution.
a (float): the minimum cutoff value.
b (float): the maximum cutoff value.
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def constant_init(module, val, bias=0):
if hasattr(module, "weight") and module.weight is not None:
nn.init.constant_(module.weight, val)
if hasattr(module, "bias") and module.bias is not None:
nn.init.constant_(module.bias, bias)
def build_norm_layer(norm_cfg, embed_dims):
assert norm_cfg["type"] == "LN"
norm_layer = nn.LayerNorm(embed_dims)
return norm_cfg["type"], norm_layer
class GELU(nn.Module):
r"""Applies the Gaussian Error Linear Units function:
.. math::
\text{GELU}(x) = x * \Phi(x)
where :math:`\Phi(x)` is the Cumulative Distribution Function for
Gaussian Distribution.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
.. image:: scripts/activation_images/GELU.png
Examples::
>>> m = nn.GELU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input):
return F.gelu(input)
def build_activation_layer(act_cfg):
if act_cfg["type"] == "ReLU":
act_layer = nn.ReLU(inplace=act_cfg["inplace"])
elif act_cfg["type"] == "GELU":
act_layer = GELU()
return act_layer
def build_conv_layer(
conv_cfg, in_channels, out_channels, kernel_size, stride, padding, dilation, bias
):
conv_layer = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
return conv_layer
def drop_path(x, drop_prob=0.0, training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
We follow the implementation
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
# handle tensors with different dimensions, not just 4D tensors.
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
output = x.div(keep_prob) * random_tensor.floor()
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
We follow the implementation
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501
Args:
drop_prob (float): Probability of the path to be zeroed. Default: 0.1
"""
def __init__(self, drop_prob=0.1):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def build_dropout(drop_cfg):
drop_layer = DropPath(drop_cfg["drop_prob"])
return drop_layer
class FFN(BaseModule):
def __init__(
self,
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
act_cfg=dict(type="ReLU", inplace=True),
ffn_drop=0.0,
dropout_layer=None,
add_identity=True,
init_cfg=None,
**kwargs,
):
super(FFN, self).__init__()
assert num_fcs >= 2, "num_fcs should be no less " f"than 2. got {num_fcs}."
self.embed_dims = embed_dims
self.feedforward_channels = feedforward_channels
self.num_fcs = num_fcs
self.act_cfg = act_cfg
self.activate = build_activation_layer(act_cfg)
layers = []
in_channels = embed_dims
for _ in range(num_fcs - 1):
layers.append(
Sequential(
Linear(in_channels, feedforward_channels),
self.activate,
nn.Dropout(ffn_drop),
)
)
in_channels = feedforward_channels
layers.append(Linear(feedforward_channels, embed_dims))
layers.append(nn.Dropout(ffn_drop))
self.layers = Sequential(*layers)
self.dropout_layer = (
build_dropout(dropout_layer) if dropout_layer else torch.nn.Identity()
)
self.add_identity = add_identity
def forward(self, x, identity=None):
"""Forward function for `FFN`.
The function would add x to the output tensor if residue is None.
"""
out = self.layers(x)
if not self.add_identity:
return self.dropout_layer(out)
if identity is None:
identity = x
return identity + self.dropout_layer(out)
def swin_converter(ckpt):
new_ckpt = OrderedDict()
def correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, 4, in_channel // 4)
x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(4, in_channel // 4)
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
return x
for k, v in ckpt.items():
if k.startswith("head"):
continue
elif k.startswith("layers"):
new_v = v
if "attn." in k:
new_k = k.replace("attn.", "attn.w_msa.")
elif "mlp." in k:
if "mlp.fc1." in k:
new_k = k.replace("mlp.fc1.", "ffn.layers.0.0.")
elif "mlp.fc2." in k:
new_k = k.replace("mlp.fc2.", "ffn.layers.1.")
else:
new_k = k.replace("mlp.", "ffn.")
elif "downsample" in k:
new_k = k
if "reduction." in k:
new_v = correct_unfold_reduction_order(v)
elif "norm." in k:
new_v = correct_unfold_norm_order(v)
else:
new_k = k
new_k = new_k.replace("layers", "stages", 1)
elif k.startswith("patch_embed"):
new_v = v
if "proj" in k:
new_k = k.replace("proj", "projection")
else:
new_k = k
else:
new_v = v
new_k = k
new_ckpt["backbone." + new_k] = new_v
return new_ckpt
class AdaptivePadding(nn.Module):
"""Applies padding to input (if needed) so that input can get fully covered
by filter you specified. It support two modes "same" and "corner". The
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around
input. The "corner" mode would pad zero to bottom right.
Args:
kernel_size (int | tuple): Size of the kernel:
stride (int | tuple): Stride of the filter. Default: 1:
dilation (int | tuple): Spacing between kernel elements.
Default: 1
padding (str): Support "same" and "corner", "corner" mode
would pad zero to bottom right, and "same" mode would
pad zero around input. Default: "corner".
Example:
>>> kernel_size = 16
>>> stride = 16
>>> dilation = 1
>>> input = torch.rand(1, 1, 15, 17)
>>> adap_pad = AdaptivePadding(
>>> kernel_size=kernel_size,
>>> stride=stride,
>>> dilation=dilation,
>>> padding="corner")
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
>>> input = torch.rand(1, 1, 16, 17)
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
"""
def __init__(self, kernel_size=1, stride=1, dilation=1, padding="corner"):
super(AdaptivePadding, self).__init__()
assert padding in ("same", "corner")
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
dilation = to_2tuple(dilation)
self.padding = padding
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
def get_pad_shape(self, input_shape):
input_h, input_w = input_shape
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.stride
output_h = math.ceil(input_h / stride_h)
output_w = math.ceil(input_w / stride_w)
pad_h = max(
(output_h - 1) * stride_h + (kernel_h - 1) * self.dilation[0] + 1 - input_h,
0,
)
pad_w = max(
(output_w - 1) * stride_w + (kernel_w - 1) * self.dilation[1] + 1 - input_w,
0,
)
return pad_h, pad_w
def forward(self, x):
B, C, h, w = x.shape
pad_h, pad_w = self.get_pad_shape((h, w))
if pad_h > 0 or pad_w > 0:
if self.padding == "corner":
return F.pad(x, [0, pad_w, 0, pad_h]).view(
B, C, h + pad_h, w + pad_w
), (
h + pad_h,
w + pad_w,
)
elif self.padding == "same":
return F.pad(
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
).view(B, C, h + pad_h, w + pad_w), (
h + pad_h,
w + pad_w,
)
return x, (h, w)
class PatchEmbed(BaseModule):
"""Image to Patch Embedding.
We use a conv layer to implement PatchEmbed.
Args:
in_channels (int): The num of input channels. Default: 3
embed_dims (int): The dimensions of embedding. Default: 768
conv_type (str): The config dict for embedding
conv layer type selection. Default: "Conv2d.
kernel_size (int): The kernel_size of embedding conv. Default: 16.
stride (int): The slide stride of embedding conv.
Default: None (Would be set as `kernel_size`).
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int): The dilation rate of embedding conv. Default: 1.
bias (bool): Bias of embed conv. Default: True.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: None.
input_size (int | tuple | None): The size of input, which will be
used to calculate the out size. Only work when `dynamic_size`
is False. Default: None.
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
Default: None.
"""
def __init__(
self,
in_channels=3,
embed_dims=768,
conv_type="Conv2d",
kernel_size=16,
stride=16,
padding="corner",
dilation=1,
bias=True,
norm_cfg=None,
input_size=None,
init_cfg=None,
):
super(PatchEmbed, self).__init__()
self.embed_dims = embed_dims
if stride is None:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
)
# disable the padding of conv
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.projection = build_conv_layer(
dict(type=conv_type),
in_channels=in_channels,
out_channels=embed_dims,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
else:
self.norm = None
if input_size:
input_size = to_2tuple(input_size)
# `init_out_size` would be used outside to
# calculate the num_patches
# when `use_abs_pos_embed` outside
self.init_input_size = input_size
if self.adap_padding:
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
input_h, input_w = input_size
input_h = input_h + pad_h
input_w = input_w + pad_w
input_size = (input_h, input_w)
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
h_out = (
input_size[0] + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1
) // stride[0] + 1
w_out = (
input_size[1] + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1
) // stride[1] + 1
self.init_out_size = (h_out, w_out)
else:
self.init_input_size = None
self.init_out_size = None
def forward(self, x):
"""
Args:
x (Tensor): Has shape (B, C, H, W). In most case, C is 3.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_h, out_w).
"""
if self.adap_padding:
x, _ = self.adap_padding(x)
x = self.projection(x)
B, C, out_h, out_w = x.shape
x = x.view(B, C, out_h * out_w).transpose(1, 2)
if self.norm is not None:
x = self.norm(x)
return x, (out_h, out_w)
class PatchMerging(BaseModule):
"""Merge patch feature map.
This layer groups feature map by kernel_size, and applies norm and linear
layers to the grouped feature map. Our implementation uses `nn.Unfold` to
merge patch, which is about 25% faster than original implementation.
Instead, we need to modify pretrained models for compatibility.
Args:
in_channels (int): The num of input channels.
to gets fully covered by filter and stride you specified..
Default: True.
out_channels (int): The num of output channels.
kernel_size (int | tuple, optional): the kernel size in the unfold
layer. Defaults to 2.
stride (int | tuple, optional): the stride of the sliding blocks in the
unfold layer. Default: None. (Would be set as `kernel_size`)
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int | tuple, optional): dilation parameter in the unfold
layer. Default: 1.
bias (bool, optional): Whether to add bias in linear layer or not.
Defaults: False.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='LN').
init_cfg (dict, optional): The extra config for initialization.
Default: None.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size=2,
stride=None,
padding="corner",
dilation=1,
bias=False,
norm_cfg=dict(type="LN"),
init_cfg=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if stride:
stride = stride
else:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
)
# disable the padding of unfold
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.sampler = nn.Unfold(
kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride
)
sample_dim = kernel_size[0] * kernel_size[1] * in_channels
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
else:
self.norm = None
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)
def forward(self, x, input_size):
"""
Args:
x (Tensor): Has shape (B, H*W, C_in).
input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
Default: None.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
- out_size (tuple[int]): Spatial shape of x, arrange as
(Merged_H, Merged_W).
"""
B, L, C = x.shape
assert isinstance(input_size, Sequence), (
f"Expect " f"input_size is " f"`Sequence` " f"but get {input_size}"
)
H, W = input_size
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W
# Use nn.Unfold to merge patch. About 25% faster than original method,
# but need to modify pretrained model for compatibility
if self.adap_padding:
x, (H, W) = self.adap_padding(x)
x = self.sampler(x)
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
out_h = (
H
+ 2 * self.sampler.padding[0]
- self.sampler.dilation[0] * (self.sampler.kernel_size[0] - 1)
- 1
) // self.sampler.stride[0] + 1
out_w = (
W
+ 2 * self.sampler.padding[1]
- self.sampler.dilation[1] * (self.sampler.kernel_size[1] - 1)
- 1
) // self.sampler.stride[1] + 1
x = x.view(B, C * H * W // (out_h * out_w), out_h * out_w)
output_size = (out_h, out_w)
x = x.transpose(1, 2) # B, H/2*W/2, 4*C
x = self.norm(x) if self.norm else x
x = self.reduction(x)
return x, output_size
class WindowMSA(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): The height and width of the window.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(
self,
embed_dims,
num_heads,
window_size,
qkv_bias=True,
qk_scale=None,
attn_drop_rate=0.0,
proj_drop_rate=0.0,
init_cfg=None,
):
super().__init__()
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.scale = qk_scale or head_embed_dims**-0.5
self.init_cfg = init_cfg
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# About 2x faster than original impl
Wh, Ww = self.window_size
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
rel_position_index = rel_index_coords + rel_index_coords.T
rel_position_index = rel_position_index.flip(1).contiguous()
self.register_buffer("relative_position_index", rel_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
self.softmax = nn.Softmax(dim=-1)
def init_weights(self):
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x, mask, N, C, nW):
"""
Args:
x (tensor): input features with shape of (nW*B, N, C)
mask (tensor | None, Optional): mask with shape of (nW,
Wh*Ww, Wh*Ww), value should be between (-inf, 0].
"""
nWB = x.shape[0]
qkv = (
self.qkv(x)
.reshape(x.shape[0], N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
# make torchscript happy (cannot use tensor as tuple)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(
(
self.window_size[0]
* self.window_size[1]
* self.window_size[0]
* self.window_size[1],
)
)
].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
self.num_heads,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(nWB // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
1
).unsqueeze(0)
attn = attn.view(nWB, self.num_heads, N, N)
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(nWB, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@staticmethod
def double_step_seq(step1, len1, step2, len2):
seq1 = torch.arange(0, step1 * len1, step1)
seq2 = torch.arange(0, step2 * len2, step2)
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
class ShiftWindowMSA(BaseModule):
"""Shifted Window Multihead Self-Attention Module.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window.
shift_size (int, optional): The shift step of each window towards
right-bottom. If zero, act as regular window-msa. Defaults to 0.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: True
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Defaults: None.
attn_drop_rate (float, optional): Dropout ratio of attention weight.
Defaults: 0.
proj_drop_rate (float, optional): Dropout ratio of output.
Defaults: 0.
dropout_layer (dict, optional): The dropout_layer used before output.
Defaults: dict(type='DropPath', drop_prob=0.).
init_cfg (dict, optional): The extra config for initialization.
Default: None.
"""
def __init__(
self,
embed_dims,
num_heads,
window_size,
shift_size=0,
qkv_bias=True,
qk_scale=None,
attn_drop_rate=0,
proj_drop_rate=0,
dropout_layer=dict(type="DropPath", drop_prob=0.0),
init_cfg=None,
):
super().__init__()
self.window_size = window_size
self.shift_size = shift_size
self.h_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
self.w_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
assert 0 <= self.shift_size < self.window_size
self.w_msa = WindowMSA(
embed_dims=embed_dims,
num_heads=num_heads,
window_size=to_2tuple(window_size),
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop_rate=attn_drop_rate,
proj_drop_rate=proj_drop_rate,
init_cfg=None,
)
self.drop = build_dropout(dropout_layer)
def forward(self, query, hw_shape):
B, L, C = query.shape
H, W = hw_shape
assert L == H * W, "input feature has wrong size"
query = query.view(-1, H, W, C)
# pad feature maps to multiples of window size
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
H_pad = H + pad_b
W_pad = W + pad_r
N = self.window_size**2
nW = H_pad * W_pad // N
# cyclic shift
if self.shift_size > 0:
shifted_query = torch.roll(
query, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
)
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device)
cnt = 0
for h in self.h_slices:
for w in self.w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
# nW, window_size, window_size, 1
mask_windows = self.window_partition(img_mask, H_pad, W_pad, 1, nW)
mask_windows = mask_windows.view(nW, N)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(
attn_mask != 0, float(-100.0)
).masked_fill(attn_mask == 0, float(0.0))
else:
shifted_query = query
attn_mask = None
# nW*B, window_size, window_size, C
query_windows = self.window_partition(shifted_query, H_pad, W_pad, C, nW)
# nW*B, window_size*window_size, C
query_windows = query_windows.view(-1, N, C)
# W-MSA/SW-MSA (nW*B, window_size*window_size, C)
attn_windows = self.w_msa(query_windows, attn_mask, N, C, nW)
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
# B H' W' C
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad, C, nW)
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
)
else:
x = shifted_x
if pad_r > 0 or pad_b:
x = x[:, :H, :W, :].contiguous()
x = x.view(-1, H * W, C)
x = self.drop(x)
return x
def window_reverse(self, windows, H, W, C, nW):
"""
Args:
windows: (nW*B, window_size, window_size, C)
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
window_size = self.window_size
x = windows.view(
-1, H // window_size, W // window_size, window_size, window_size, C
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
return x
def window_partition(self, x, H, W, C, nW):
"""
Args:
x: (B, H, W, C)
Returns:
windows: (nW*B, window_size, window_size, C)
"""
window_size = self.window_size
x = x.view(
-1,
H // window_size,
window_size,
W // window_size,
window_size,
C,
)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
windows = windows.view(-1, window_size, window_size, C)
return windows
class SwinBlock(BaseModule):
""" "
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
window_size (int, optional): The local window scale. Default: 7.
shift (bool, optional): whether to shift window or not. Default False.
qkv_bias (bool, optional): enable bias for qkv if True. Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
drop_rate (float, optional): Dropout rate. Default: 0.
attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
drop_path_rate (float, optional): Stochastic depth rate. Default: 0.
act_cfg (dict, optional): The config dict of activation function.
Default: dict(type='GELU').
norm_cfg (dict, optional): The config dict of normalization.
Default: dict(type='LN').
with_cp (bool, optional): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
init_cfg (dict | list | None, optional): The init config.
Default: None.
"""
def __init__(
self,
embed_dims,
num_heads,
feedforward_channels,
window_size=7,
shift=False,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
act_cfg=dict(type="GELU"),
norm_cfg=dict(type="LN"),
with_cp=False,
init_cfg=None,
):
super(SwinBlock, self).__init__()
self.init_cfg = init_cfg
self.with_cp = with_cp
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
self.attn = ShiftWindowMSA(
embed_dims=embed_dims,
num_heads=num_heads,
window_size=window_size,
shift_size=window_size // 2 if shift else 0,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop_rate=attn_drop_rate,
proj_drop_rate=drop_rate,
dropout_layer=dict(type="DropPath", drop_prob=drop_path_rate),
init_cfg=None,
)
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=2,
ffn_drop=drop_rate,
dropout_layer=dict(type="DropPath", drop_prob=drop_path_rate),
act_cfg=act_cfg,
add_identity=True,
init_cfg=None,
)
def forward(self, x, hw_shape):
def _inner_forward(x):
identity = x
x = self.norm1(x)
x = self.attn(x, hw_shape)
x = x + identity
identity = x
x = self.norm2(x)
x = self.ffn(x, identity=identity)
return x
if self.with_cp and x.requires_grad:
x = cp.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class SwinBlockSequence(BaseModule):
"""Implements one stage in Swin Transformer.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
depth (int): The number of blocks in this stage.
window_size (int, optional): The local window scale. Default: 7.
qkv_bias (bool, optional): enable bias for qkv if True. Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
drop_rate (float, optional): Dropout rate. Default: 0.
attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
drop_path_rate (float | list[float], optional): Stochastic depth
rate. Default: 0.
downsample (BaseModule | None, optional): The downsample operation
module. Default: None.
act_cfg (dict, optional): The config dict of activation function.
Default: dict(type='GELU').
norm_cfg (dict, optional): The config dict of normalization.
Default: dict(type='LN').
with_cp (bool, optional): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
init_cfg (dict | list | None, optional): The init config.
Default: None.
"""
def __init__(
self,
embed_dims,
num_heads,
feedforward_channels,
depth,
window_size=7,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
downsample=None,
act_cfg=dict(type="GELU"),
norm_cfg=dict(type="LN"),
with_cp=False,
init_cfg=None,
):
super().__init__()
if isinstance(drop_path_rate, list):
drop_path_rates = drop_path_rate
assert len(drop_path_rates) == depth
else:
drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)]
self.blocks = ModuleList()
for i in range(depth):
block = SwinBlock(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=feedforward_channels,
window_size=window_size,
shift=False if i % 2 == 0 else True,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rates[i],
act_cfg=act_cfg,
norm_cfg=norm_cfg,
with_cp=with_cp,
init_cfg=None,
)
self.blocks.append(block)
self.downsample = downsample
def forward(self, x, hw_shape):
for block in self.blocks:
x = block(x, hw_shape)
if self.downsample:
x_down, down_hw_shape = self.downsample(x, hw_shape)
return x_down, down_hw_shape, x, hw_shape
else:
return x, hw_shape, x, hw_shape
class SwinTransformer(BaseModule):
"""Swin Transformer
A PyTorch implement of : `Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/abs/2103.14030
Inspiration from
https://github.com/microsoft/Swin-Transformer
Args:
pretrain_img_size (int | tuple[int]): The size of input image when
pretrain. Defaults: 224.
in_channels (int): The num of input channels.
Defaults: 3.
embed_dims (int): The feature dimension. Default: 96.
patch_size (int | tuple[int]): Patch size. Default: 4.
window_size (int): Window size. Default: 7.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
Default: 4.
depths (tuple[int]): Depths of each Swin Transformer stage.
Default: (2, 2, 6, 2).
num_heads (tuple[int]): Parallel attention heads of each Swin
Transformer stage. Default: (3, 6, 12, 24).
strides (tuple[int]): The patch merging or patch embedding stride of
each Swin Transformer stage. (In swin, we set kernel size equal to
stride.) Default: (4, 2, 2, 2).
out_indices (tuple[int]): Output from which stages.
Default: (0, 1, 2, 3).
qkv_bias (bool, optional): If True, add a learnable bias to query, key,
value. Default: True
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
patch_norm (bool): If add a norm layer for patch embed and patch
merging. Default: True.
drop_rate (float): Dropout rate. Defaults: 0.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Defaults: 0.1.
use_abs_pos_embed (bool): If True, add absolute position embedding to
the patch embedding. Defaults: False.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LN').
norm_cfg (dict): Config dict for normalization layer at
output of backone. Defaults: dict(type='LN').
with_cp (bool, optional): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
pretrained (str, optional): model pretrained path. Default: None.
convert_weights (bool): The flag indicates whether the
pre-trained model is from the original repo. We may need
to convert some keys to make it compatible.
Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(
self,
pretrain_img_size=224,
in_channels=3,
embed_dims=96,
patch_size=4,
window_size=7,
mlp_ratio=4,
depths=(2, 2, 6, 2),
num_heads=(3, 6, 12, 24),
strides=(4, 2, 2, 2),
out_indices=(0, 1, 2, 3),
qkv_bias=True,
qk_scale=None,
patch_norm=True,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
use_abs_pos_embed=False,
act_cfg=dict(type="GELU"),
norm_cfg=dict(type="LN"),
with_cp=False,
pretrained=None,
convert_weights=False,
frozen_stages=-1,
init_cfg=None,
# NOTE: This is my modification based on SOLIDER
semantic_weight=0.5,
freeze_semantic_embedding=False,
):
self.convert_weights = convert_weights
self.frozen_stages = frozen_stages
if isinstance(pretrain_img_size, int):
pretrain_img_size = to_2tuple(pretrain_img_size)
elif isinstance(pretrain_img_size, tuple):
if len(pretrain_img_size) == 1:
pretrain_img_size = to_2tuple(pretrain_img_size[0])
assert len(pretrain_img_size) == 2, (
f"The size of image should have length 1 or 2, "
f"but got {len(pretrain_img_size)}"
)
assert not (
init_cfg and pretrained
), "init_cfg and pretrained cannot be specified at the same time"
if isinstance(pretrained, str):
warnings.warn(
"DeprecationWarning: pretrained is deprecated, "
'please use "init_cfg" instead'
)
self.init_cfg = dict(type="Pretrained", checkpoint=pretrained)
elif pretrained is None:
self.init_cfg = init_cfg
else:
raise TypeError("pretrained must be a str or None")
super(SwinTransformer, self).__init__()
num_layers = len(depths)
self.out_indices = out_indices
self.use_abs_pos_embed = use_abs_pos_embed
assert strides[0] == patch_size, "Use non-overlapping patch embed."
self.patch_embed = PatchEmbed(
in_channels=in_channels,
embed_dims=embed_dims,
conv_type="Conv2d",
kernel_size=patch_size,
stride=strides[0],
norm_cfg=norm_cfg if patch_norm else None,
init_cfg=None,
)
if self.use_abs_pos_embed:
patch_row = pretrain_img_size[0] // patch_size
patch_col = pretrain_img_size[1] // patch_size
num_patches = patch_row * patch_col
self.absolute_pos_embed = nn.Parameter(
torch.zeros((1, num_patches, embed_dims))
)
self.drop_after_pos = nn.Dropout(p=drop_rate)
# set stochastic depth decay rule
total_depth = sum(depths)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)]
self.stages = ModuleList()
in_channels = embed_dims
for i in range(num_layers):
if i < num_layers - 1:
downsample = PatchMerging(
in_channels=in_channels,
out_channels=2 * in_channels,
stride=strides[i + 1],
norm_cfg=norm_cfg if patch_norm else None,
init_cfg=None,
)
else:
downsample = None
stage = SwinBlockSequence(
embed_dims=in_channels,
num_heads=num_heads[i],
feedforward_channels=mlp_ratio * in_channels,
depth=depths[i],
window_size=window_size,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=dpr[sum(depths[:i]) : sum(depths[: i + 1])],
downsample=downsample,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
with_cp=with_cp,
init_cfg=None,
)
self.stages.append(stage)
if downsample:
in_channels = downsample.out_channels
self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)]
# Add a norm layer for each output
for i in out_indices:
layer = build_norm_layer(norm_cfg, self.num_features[i])[1]
layer_name = f"norm{i}"
self.add_module(layer_name, layer)
# self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.avgpool = nn.AdaptiveAvgPool1d(1)
# semantic embedding
self.semantic_weight = semantic_weight
self.freeze_semantic_embedding = freeze_semantic_embedding
if self.semantic_weight >= 0:
self.semantic_embed_w = ModuleList()
self.semantic_embed_b = ModuleList()
for i in range(len(depths)):
if i >= len(depths) - 1:
i = len(depths) - 2
semantic_embed_w = nn.Linear(2, self.num_features[i + 1])
semantic_embed_b = nn.Linear(2, self.num_features[i + 1])
# TODO: Test with semantic embed unfreeze
if self.freeze_semantic_embedding:
for param in semantic_embed_w.parameters():
param.requires_grad = False
for param in semantic_embed_b.parameters():
param.requires_grad = False
trunc_normal_init(semantic_embed_w, std=0.02, bias=0.0)
trunc_normal_init(semantic_embed_b, std=0.02, bias=0.0)
self.semantic_embed_w.append(semantic_embed_w)
self.semantic_embed_b.append(semantic_embed_b)
self.softplus = nn.Softplus()
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer, self).train(mode)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.use_abs_pos_embed:
self.absolute_pos_embed.requires_grad = False
self.drop_after_pos.eval()
for i in range(1, self.frozen_stages + 1):
if (i - 1) in self.out_indices:
norm_layer = getattr(self, f"norm{i-1}")
norm_layer.eval()
for param in norm_layer.parameters():
param.requires_grad = False
m = self.stages[i - 1]
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
logger = logging.getLogger("loading parameters.")
if pretrained is None:
logger.warn(
f"No pre-trained weights for "
f"{self.__class__.__name__}, "
f"training start from scratch"
)
if self.use_abs_pos_embed:
trunc_normal_(self.absolute_pos_embed, std=0.02)
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_init(m, std=0.02, bias=0.0)
elif isinstance(m, nn.LayerNorm):
constant_init(m.bias, 0)
constant_init(m.weight, 1.0)
else:
ckpt = torch.load(pretrained, map_location="cpu")
if "teacher" in ckpt:
ckpt = ckpt["teacher"]
if "state_dict" in ckpt:
_state_dict = ckpt["state_dict"]
elif "model" in ckpt:
_state_dict = ckpt["model"]
else:
_state_dict = ckpt
if self.convert_weights:
# supported loading weight from original repo,
_state_dict = swin_converter(_state_dict)
state_dict = OrderedDict()
for k, v in _state_dict.items():
if k.startswith("backbone."):
state_dict[k[9:]] = v
# strip prefix of state_dict
if list(state_dict.keys())[0].startswith("module."):
state_dict = {k[7:]: v for k, v in state_dict.items()}
# reshape absolute position embedding
if state_dict.get("absolute_pos_embed") is not None:
absolute_pos_embed = state_dict["absolute_pos_embed"]
N1, L, C1 = absolute_pos_embed.size()
N2, C2, H, W = self.absolute_pos_embed.size()
if N1 != N2 or C1 != C2 or L != H * W:
logger.warning("Error in loading absolute_pos_embed, pass")
else:
state_dict["absolute_pos_embed"] = (
absolute_pos_embed.view(N2, H, W, C2)
.permute(0, 3, 1, 2)
.contiguous()
)
# interpolate position bias table if needed
relative_position_bias_table_keys = [
k for k in state_dict.keys() if "relative_position_bias_table" in k
]
for table_key in relative_position_bias_table_keys:
table_pretrained = state_dict[table_key]
table_current = self.state_dict()[table_key]
L1, nH1 = table_pretrained.size()
L2, nH2 = table_current.size()
if nH1 != nH2:
logger.warning(f"Error in loading {table_key}, pass")
elif L1 != L2:
S1 = int(L1**0.5)
S2 = int(L2**0.5)
table_pretrained_resized = F.interpolate(
table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1),
size=(S2, S2),
mode="bicubic",
)
state_dict[table_key] = (
table_pretrained_resized.view(nH2, L2)
.permute(1, 0)
.contiguous()
)
res = self.load_state_dict(state_dict, False)
print("unloaded parameters:", res)
def forward(self, x, semantic_weight=None):
if self.semantic_weight >= 0 and semantic_weight == None:
w = torch.ones(x.shape[0], 1) * self.semantic_weight
w = torch.cat([w, 1 - w], axis=-1)
semantic_weight = w.to(x.device)
x, hw_shape = self.patch_embed(x)
if self.use_abs_pos_embed:
x = x + self.absolute_pos_embed
x = self.drop_after_pos(x)
outs = []
for i, stage in enumerate(self.stages):
x, hw_shape, out, out_hw_shape = stage(x, hw_shape)
if self.semantic_weight >= 0:
sw = self.semantic_embed_w[i](semantic_weight).unsqueeze(1)
sb = self.semantic_embed_b[i](semantic_weight).unsqueeze(1)
x = x * self.softplus(sw) + sb
if i in self.out_indices:
norm_layer = getattr(self, f"norm{i}")
out = norm_layer(out)
# out = (
# out.view(-1, out_hw_shape[0], out_hw_shape[1], self.num_features[i])
# .permute(0, 3, 1, 2)
# .contiguous()
# )
outs.append(out)
x = outs[-1]
x_cls = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.cat([x_cls.transpose(1, 2), x], dim=1)
return x
def swin_base_patch4_window7_224(
img_size=224, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, **kwargs
):
model = SwinTransformer(
pretrain_img_size=img_size,
patch_size=4,
window_size=7,
embed_dims=128,
depths=(2, 2, 18, 2),
num_heads=(4, 8, 16, 32),
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
**kwargs,
)
return model
def swin_small_patch4_window7_224(
img_size=224, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, **kwargs
):
model = SwinTransformer(
pretrain_img_size=img_size,
patch_size=4,
window_size=7,
embed_dims=96,
depths=(2, 2, 18, 2),
num_heads=(3, 6, 12, 24),
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
**kwargs,
)
return model
def swin_tiny_patch4_window7_224(
img_size=224, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, **kwargs
):
model = SwinTransformer(
pretrain_img_size=img_size,
patch_size=4,
window_size=7,
embed_dims=96,
depths=(2, 2, 6, 2),
num_heads=(3, 6, 12, 24),
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
**kwargs,
)
return model
def build_solider(cfg: dict) -> SwinTransformer:
name = cfg["name"]
img_size = cfg["img_size"]
# drop_path_rate = cfg["drop_path_rate"]\
# TODO: Test with drop_path_rate = 0.0
drop_path_rate = 0.1
# drop_rate = cfg["drop_rate"]
drop_rate = 0.0
# attn_drop_rate = cfg["attn_drop_rate"]
attn_drop_rate = 0.0
pretrained = cfg["pretrained"]
# convert_weights = cfg["convert_weights"]
convert_weights = False
semantic_weight = cfg["semantic_weight"]
if name == "swin_tiny_patch4_window7_224":
model = swin_tiny_patch4_window7_224(
img_size=img_size,
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
pretrained=pretrained,
convert_weights=convert_weights,
semantic_weight=semantic_weight,
)
elif name == "swin_small_patch4_window7_224":
model = swin_small_patch4_window7_224(
img_size=img_size,
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
pretrained=pretrained,
convert_weights=convert_weights,
semantic_weight=semantic_weight,
)
elif name == "swin_base_patch4_window7_224":
model = swin_base_patch4_window7_224(
img_size=img_size,
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
pretrained=pretrained,
convert_weights=convert_weights,
semantic_weight=semantic_weight,
)
else:
raise RuntimeError(f"Not support model name: {name}")
if pretrained != "":
if os.path.exists(pretrained):
model.init_weights(pretrained)
else:
warnings.warn(f"pretrained: {pretrained} not exists")
return model
# BACKBONE_NAME2WIDTH = {
# "swin_tiny_patch4_window7_224": 768,
# "swin_small_patch4_window7_224": 768,
# "swin_base_patch4_window7_224": 1024,
# "solider_tiny": 768,
# "solider_small": 768,
# "solider_base": 1024,
# }
SOLIDER_BASE_MODEL_CONFIG_PARAMETERS = {
"pretrain_img_size": [224, 224],
"in_channels": 3,
"embed_dims": 128,
"patch_size": 4,
"window_size": 7,
"mlp_ratio": 4,
"depths": (2, 2, 18, 2),
"num_heads": (4, 8, 16, 32),
"strides": (4, 2, 2, 2),
"out_indices": (0, 1, 2, 3),
"qkv_bias": True,
"qk_scale": None,
"patch_norm": True,
"drop_rate": 0.0,
"attn_drop_rate": 0.0,
"drop_path_rate": 0.0,
"use_abs_pos_embed": False,
"act_cfg": dict(type="GELU"),
"norm_cfg": dict(type="LN"),
"with_cp": False,
"pretrained": None,
"convert_weights": False,
"frozen_stages": -1,
"init_cfg": None,
"semantic_weight": 0.5,
"name": "solider_base",
}
SOLIDER_SMALL_MODEL_CONFIG_PARAMETERS = {
"pretrain_img_size": [224, 224],
"in_channels": 3,
"embed_dims": 96,
"patch_size": 4,
"window_size": 7,
"mlp_ratio": 4,
"depths": (2, 2, 18, 2),
"num_heads": (3, 6, 12, 24),
"strides": (4, 2, 2, 2),
"out_indices": (0, 1, 2, 3),
"qkv_bias": True,
"qk_scale": None,
"patch_norm": True,
"drop_rate": 0.0,
"attn_drop_rate": 0.0,
"drop_path_rate": 0.0,
"use_abs_pos_embed": False,
"act_cfg": dict(type="GELU"),
"norm_cfg": dict(type="LN"),
"with_cp": False,
"pretrained": None,
"convert_weights": False,
"frozen_stages": -1,
"init_cfg": None,
"semantic_weight": 0.5,
"name": "solider_small",
}
SOLIDER_TINY_MODEL_CONFIG_PARAMETERS = {
"pretrain_img_size": [224, 224],
"in_channels": 3,
"embed_dims": 96,
"patch_size": 4,
"window_size": 7,
"mlp_ratio": 4,
"depths": (2, 2, 6, 2),
"num_heads": (3, 6, 12, 24),
"strides": (4, 2, 2, 2),
"out_indices": (0, 1, 2, 3),
"qkv_bias": True,
"qk_scale": None,
"patch_norm": True,
"drop_rate": 0.0,
"attn_drop_rate": 0.0,
"drop_path_rate": 0.0,
"use_abs_pos_embed": False,
"act_cfg": dict(type="GELU"),
"norm_cfg": dict(type="LN"),
"with_cp": False,
"pretrained": None,
"convert_weights": False,
"frozen_stages": -1,
"init_cfg": None,
"semantic_weight": 0.5,
"name": "solider_tiny",
}
SOLIDER_BASE_CONFIG = SOLIDERConfig(**SOLIDER_BASE_MODEL_CONFIG_PARAMETERS)
SOLIDER_SMALL_CONFIG = SOLIDERConfig(**SOLIDER_SMALL_MODEL_CONFIG_PARAMETERS)
SOLIDER_TINY_CONFIG = SOLIDERConfig(**SOLIDER_TINY_MODEL_CONFIG_PARAMETERS)
def build_solider_vision_encoder(weight_path, name="swin_small_patch4_window7_224"):
vision_width = BACKBONE_NAME2WIDTH[name]
return (
build_solider(
{
"name": name,
"img_size": [384, 128],
"pretrained": weight_path,
"semantic_weight": 0.5,
}
),
vision_width,
)
class SOLIDERModel(PreTrainedModel):
config_class = SOLIDERConfig
base_model_prefix = "solider"
def __init__(self, config: SOLIDERConfig):
super().__init__(config)
self.solider = SwinTransformer(
pretrain_img_size=config.pretrain_img_size,
embed_dims=config.embed_dims,
patch_size=config.patch_size,
window_size=config.window_size,
mlp_ratio=config.mlp_ratio,
depths=config.depths,
num_heads=config.num_heads,
strides=config.strides,
out_indices=config.out_indices,
qkv_bias=config.qkv_bias,
qk_scale=config.qk_scale,
patch_norm=config.patch_norm,
drop_rate=config.drop_rate,
attn_drop_rate=config.attn_drop_rate,
drop_path_rate=config.drop_path_rate,
use_abs_pos_embed=config.use_abs_pos_embed,
act_cfg=config.act_cfg,
norm_cfg=config.norm_cfg,
with_cp=config.with_cp,
pretrained=config.pretrained,
convert_weights=config.convert_weights,
frozen_stages=config.frozen_stages,
init_cfg=config.init_cfg,
semantic_weight=config.semantic_weight,
)
self.solider_name = config.name
self.vision_width = BACKBONE_NAME2WIDTH[self.solider_name]
self.hidden_size = self.vision_width
self.config = config
# self.init_weights()
def forward(self, x):
return self.solider(x, None)
# NOTE: Currently not used!
class SoliderEncoder(SwinTransformer):
options = [
"swin_tiny_patch4_window7_224",
"swin_small_patch4_window7_224",
"swin_base_patch4_window7_224",
]
@classmethod
def from_config(cls, cfg, from_pretrained=None):
name = cfg.get("name", "swin_small_patch4_window7_224")
img_size = cfg.get("img_size", [384, 128])
drop_path_rate = cfg.get("drop_path_rate", 0.1)
drop_rate = cfg.get("drop_rate", 0.0)
attn_drop_rate = cfg.get("attn_drop_rate", 0.0)
pretrained = cfg.get("pretrained", None)
convert_weights = cfg.get("convert_weights", False)
semantic_weight = cfg.get("semantic_weight", 0.2)
if name == "swin_tiny_patch4_window7_224" or name == "tiny":
model = swin_tiny_patch4_window7_224(
img_size=img_size,
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
pretrained=pretrained,
convert_weights=convert_weights,
semantic_weight=semantic_weight,
)
elif name == "swin_small_patch4_window7_224" or name == "small":
model = swin_small_patch4_window7_224(
img_size=img_size,
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
pretrained=pretrained,
convert_weights=convert_weights,
semantic_weight=semantic_weight,
)
elif name == "swin_base_patch4_window7_224" or name == "base":
model = swin_base_patch4_window7_224(
img_size=img_size,
drop_path_rate=drop_path_rate,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
pretrained=pretrained,
convert_weights=convert_weights,
semantic_weight=semantic_weight,
)
model.vision_width = BACKBONE_NAME2WIDTH[name]
if from_pretrained is not None:
print("begin load pretrained model solider")
state_dict_vision_encoder = torch.load(from_pretrained, map_location="cpu")
msg = model.load_state_dict(state_dict_vision_encoder)
print(msg)
model.config = cfg
return model
def forward_features(self, x):
return SwinTransformer.forward(self, x, None)