Update README.md
Browse files
README.md
CHANGED
@@ -6,24 +6,48 @@ model-index:
|
|
6 |
results: []
|
7 |
---
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
-
More
|
|
|
|
|
23 |
|
24 |
## Training and evaluation data
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Training procedure
|
29 |
|
|
|
6 |
results: []
|
7 |
---
|
8 |
|
9 |
+
<p align="center">
|
10 |
+
<div style="display: flex;text-align: center;">
|
11 |
+
<div>
|
12 |
+
<img src="https://firebasestorage.googleapis.com/v0/b/database-7ca5c.appspot.com/o/llm%2F68747470733a2f2f7331312e617831782e636f6d2f323032332f31322f32382f70697176444d562e706e67.png?alt=media&token=30a2470d-861e-4295-a7f4-da48231724cf" width="250" style="margin-bottom: 0.2;"/>
|
13 |
+
</div>
|
14 |
+
<div>
|
15 |
+
<img src="https://firebasestorage.googleapis.com/v0/b/database-7ca5c.appspot.com/o/llm%2Flogo_qwen.jpg?alt=media&token=fd2cd557-2f45-4f94-86d3-a5e7c9eef630" width="600" style="margin-bottom: 1rem;"/>
|
16 |
+
</div>
|
17 |
+
</div>
|
18 |
+
<p>
|
19 |
+
<h1 align="center">MoE-LLaVA-Qwen1.5-1.8B×4-Top2: When Vision meet Small-scaled Language Model and Vietnamese Synthetic Dataset</h1>
|
20 |
|
21 |
+
<h5 align="center">
|
22 |
|
23 |
+
# Introducing MoE-LLaVA-Qwen1.5-1.8B×4-Top2 for Vietnamese
|
24 |
|
25 |
+
We are excited to present MoE-LLaVA-Qwen1.5-1.8B×4-Top2, tailored for the Vietnamese language. This model is part of our ongoing efforts to develop Vision Language Models (VLM) for Vietnamese, a domain that is currently limited and predominantly features larger models (**~7B parameters**). Our model activates approximately **2.2B** 🤗😎 parameters per call, significantly reducing the memory footprint, and it can be quantized for local execution.
|
26 |
|
27 |
+
## Bias, Risks, and Limitations
|
28 |
|
29 |
+
The dataset may contain biases originating from its sources. Users should remain aware of these potential biases when utilizing the dataset.
|
30 |
|
31 |
+
## More Information
|
32 |
+
|
33 |
+
This dataset represents the first stage of a two-stage development process for a larger model. Stay tuned for future developments by subscribing to our updates.
|
34 |
|
35 |
## Training and evaluation data
|
36 |
|
37 |
+
### Training Dataset
|
38 |
+
|
39 |
+
Our model is trained on the comprehensive [Vi-VLM/Vista dataset](https://huggingface.co/datasets/Vi-VLM/Vista), which includes around 700,000 Vietnamese vision-language samples curated by Gemini Pro. We employed various prompt engineering techniques, including:
|
40 |
+
|
41 |
+
- **Few-shot Learning**
|
42 |
+
- **Caption-based Prompting**
|
43 |
+
- **Image-based Prompting**
|
44 |
+
|
45 |
+
### Techniques Used
|
46 |
+
|
47 |
+
- **MoE-LLaVA**: [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA/tree/main)
|
48 |
+
|
49 |
+
## Evaluation
|
50 |
+
- Comming soon 🫡
|
51 |
|
52 |
## Training procedure
|
53 |
|