tuantmdev commited on
Commit
6e5d379
·
verified ·
1 Parent(s): ef88158

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -192
README.md CHANGED
@@ -1,202 +1,147 @@
1
  ---
2
- base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.14.0
 
 
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: llama3
4
+ base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 139a1428-7ad0-486b-b35b-abf970cd0e28
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
 
19
+ axolotl version: `0.5.2`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 89527a64f595a130_train_data.json
29
+ ds_type: json
30
+ field: question
31
+ path: /workspace/input_data/89527a64f595a130_train_data.json
32
+ type: completion
33
+ debug: null
34
+ deepspeed: null
35
+ early_stopping_patience: 1
36
+ eval_max_new_tokens: 128
37
+ eval_steps: 25
38
+ eval_table_size: null
39
+ flash_attention: false
40
+ fp16: false
41
+ fsdp: null
42
+ fsdp_config: null
43
+ gradient_accumulation_steps: 16
44
+ gradient_checkpointing: true
45
+ group_by_length: true
46
+ hub_model_id: jssky/139a1428-7ad0-486b-b35b-abf970cd0e28
47
+ hub_repo: null
48
+ hub_strategy: checkpoint
49
+ hub_token: null
50
+ learning_rate: 0.0001
51
+ load_in_4bit: false
52
+ load_in_8bit: false
53
+ local_rank: null
54
+ logging_steps: 1
55
+ lora_alpha: 64
56
+ lora_dropout: 0.05
57
+ lora_fan_in_fan_out: null
58
+ lora_model_dir: null
59
+ lora_r: 32
60
+ lora_target_linear: true
61
+ lr_scheduler: cosine
62
+ max_steps: 50
63
+ micro_batch_size: 2
64
+ mlflow_experiment_name: /tmp/89527a64f595a130_train_data.json
65
+ model_type: AutoModelForCausalLM
66
+ num_epochs: 3
67
+ optimizer: adamw_torch
68
+ output_dir: miner_id_24
69
+ pad_to_sequence_len: true
70
+ resume_from_checkpoint: null
71
+ s2_attention: null
72
+ sample_packing: false
73
+ save_steps: 25
74
+ sequence_len: 2048
75
+ strict: false
76
+ tf32: false
77
+ tokenizer_type: AutoTokenizer
78
+ train_on_inputs: false
79
+ trust_remote_code: true
80
+ val_set_size: 0.05
81
+ wandb_entity: null
82
+ wandb_mode: online
83
+ wandb_name: 139a1428-7ad0-486b-b35b-abf970cd0e28
84
+ wandb_project: Gradients-On-Demand
85
+ wandb_run: your_name
86
+ wandb_runid: 139a1428-7ad0-486b-b35b-abf970cd0e28
87
+ warmup_ratio: 0.05
88
+ weight_decay: 0.01
89
+ xformers_attention: true
90
+
91
+ ```
92
+
93
+ </details><br>
94
+
95
+ # 139a1428-7ad0-486b-b35b-abf970cd0e28
96
+
97
+ This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset.
98
+ It achieves the following results on the evaluation set:
99
+ - Loss: 2.5954
100
+
101
+ ## Model description
102
+
103
+ More information needed
104
+
105
+ ## Intended uses & limitations
106
+
107
+ More information needed
108
+
109
+ ## Training and evaluation data
110
+
111
+ More information needed
112
+
113
+ ## Training procedure
114
+
115
+ ### Training hyperparameters
116
+
117
+ The following hyperparameters were used during training:
118
+ - learning_rate: 0.0001
119
+ - train_batch_size: 2
120
+ - eval_batch_size: 2
121
+ - seed: 42
122
+ - distributed_type: multi-GPU
123
+ - num_devices: 4
124
+ - gradient_accumulation_steps: 16
125
+ - total_train_batch_size: 128
126
+ - total_eval_batch_size: 8
127
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
128
+ - lr_scheduler_type: cosine
129
+ - lr_scheduler_warmup_steps: 2
130
+ - training_steps: 50
131
+
132
+ ### Training results
133
+
134
+ | Training Loss | Epoch | Step | Validation Loss |
135
+ |:-------------:|:------:|:----:|:---------------:|
136
+ | 4.6981 | 0.0025 | 1 | 6.5940 |
137
+ | 4.1785 | 0.0625 | 25 | 3.9796 |
138
+ | 4.3178 | 0.1249 | 50 | 3.7619 |
139
 
 
140
 
 
141
  ### Framework versions
142
 
143
+ - PEFT 0.13.2
144
+ - Transformers 4.46.3
145
+ - Pytorch 2.3.1+cu121
146
+ - Datasets 3.1.0
147
+ - Tokenizers 0.20.3