File size: 2,669 Bytes
60a73d2 3ad751d 60a73d2 3ad751d 60a73d2 3ad751d 60a73d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language: "mn"
tags:
- bert
- mongolian
- uncased
---
# BERT-BASE-MONGOLIAN-UNCASED
[Link to Official Mongolian-BERT repo](https://github.com/tugstugi/mongolian-bert)
## Model description
This repository contains pre-trained Mongolian [BERT](https://arxiv.org/abs/1810.04805) models trained by [tugstugi](https://github.com/tugstugi), [enod](https://github.com/enod) and [sharavsambuu](https://github.com/sharavsambuu).
Special thanks to [nabar](https://github.com/nabar) who provided 5x TPUs.
This repository is based on the following open source projects: [google-research/bert](https://github.com/google-research/bert/),
[huggingface/pytorch-pretrained-BERT](https://github.com/huggingface/pytorch-pretrained-BERT) and [yoheikikuta/bert-japanese](https://github.com/yoheikikuta/bert-japanese).
#### How to use
```python
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-base-mongolian-uncased', use_fast=False)
model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-base-mongolian-uncased')
## declare task ##
pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer)
## example ##
input_ = 'Миний [MASK] хоол идэх нь тун чухал.'
output_ = pipe(input_)
for i in range(len(output_)):
print(output_[i])
## output ##
#{'sequence': 'миний хувьд хоол идэх нь тун чухал.', 'score': 0.7889143824577332, 'token': 126, 'token_str': 'хувьд'}
#{'sequence': 'миний бодлоор хоол идэх нь тун чухал.', 'score': 0.18616807460784912, 'token': 6106, 'token_str': 'бодлоор'}
#{'sequence': 'миний зүгээс хоол идэх нь тун чухал.', 'score': 0.004825591575354338, 'token': 761, 'token_str': 'зүгээс'}
#{'sequence': 'миний биед хоол идэх нь тун чухал.', 'score': 0.0015743684489279985, 'token': 3010, 'token_str': 'биед'}
#{'sequence': 'миний тухайд хоол идэх нь тун чухал.', 'score': 0.0014919431414455175, 'token': 1712, 'token_str': 'тухайд'}
```
## Training data
Mongolian Wikipedia and the 700 million word Mongolian news data set [[Pretraining Procedure](https://github.com/tugstugi/mongolian-bert#pre-training)]
### BibTeX entry and citation info
```bibtex
@misc{mongolian-bert,
author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold},
title = {BERT Pretrained Models on Mongolian Datasets},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}}
}
```
|