--- license: mit tags: - generated_from_trainer datasets: - swiss_judgment_prediction metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-finetuned-mnli-SJP-v2 results: - task: name: Text Classification type: text-classification dataset: name: swiss_judgment_prediction type: swiss_judgment_prediction args: all_languages metrics: - name: Accuracy type: accuracy value: 0.5954285714285714 --- # xlm-roberta-large-xnli-finetuned-mnli-SJP-v2 This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 0.8093 - Accuracy: 0.5954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 0.8879 | 0.5191 | | No log | 2.0 | 10 | 0.8093 | 0.5954 | | No log | 3.0 | 15 | 2.4452 | 0.3176 | | No log | 4.0 | 20 | 3.6636 | 0.3084 | | No log | 5.0 | 25 | 3.7687 | 0.3393 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1