File size: 926 Bytes
17ad6cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from transformers import Pipeline
import torch

class TBCP(Pipeline):
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "text_pair" in kwargs:
            preprocess_kwargs["text_pair"] = kwargs["text_pair"]
        return preprocess_kwargs, {}, {}

    def preprocess(self, text, text_pair=None):
        return self.tokenizer(text, text_pair=text_pair, return_tensors="pt")

    def _forward(self, model_inputs):
        return self.model(**model_inputs)

    def postprocess(self, model_outputs):
        logits = model_outputs.logits
        probabilities = torch.nn.functional.softmax(logits, dim=-1)
        
        best_class = probabilities.argmax().item()
        label = self.model.config.id2label[best_class]
        score = probabilities.squeeze()[best_class].item()
        logits = logits.squeeze().tolist()
        return {"label": label, "score": score, "logits": logits}