|
from transformers import PretrainedConfig |
|
class TunBertConfig(PretrainedConfig): |
|
model_type = "bert" |
|
def __init__(self, |
|
attention_probs_dropout_prob = 0.1, |
|
classifier_dropout = None, |
|
gradient_checkpointing = False, |
|
hidden_act = "gelu", |
|
hidden_dropout_prob = 0.1, |
|
hidden_size = 768, |
|
initializer_range = 0.02, |
|
intermediate_size = 3072, |
|
layer_norm_eps = 1e-12, |
|
max_position_embeddings = 512, |
|
model_type = "bert", |
|
num_attention_heads = 12, |
|
num_hidden_layers = 12, |
|
pad_token_id = 0, |
|
position_embedding_type = "absolute", |
|
transformers_version = "4.35.2", |
|
type_vocab_size = 2, |
|
use_cache = True, |
|
vocab_size = 30522, |
|
**kwargs): |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.classifier_dropout = classifier_dropout |
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.hidden_size = hidden_size |
|
self.initializer_range = initializer_range |
|
self.intermediate_size = intermediate_size |
|
self.layer_norm_eps = layer_norm_eps |
|
self.max_position_embeddings = max_position_embeddings |
|
self.model_type = model_type |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.pad_token_id = pad_token_id |
|
self.position_embedding_type = position_embedding_type |
|
self.transformers_version = transformers_version |
|
self.type_vocab_size = type_vocab_size |
|
self.use_cache = use_cache |
|
self.vocab_size = vocab_size |
|
super().__init__(**kwargs) |